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Resumo: Este artigo apresenta métodos para determinação de atitude usando 

sensores MEMS e um processador de baixo custo Arduino One. Filtros de Kalman foram 

desenvolvidos para fundir os dados de acelerômetro, magnetômetro e giroscópio. Os 

dados do acelerômetro e magnetômetro foram processados com o método de TRIAD. 

As matrizes de covariância usadas no projeto dos filtros de Kalman foram obtidas pela 

análise de variância de Allan dos sensores. Um filtro de Kalman foi melhorado com uma 

modelagem de ruído do giroscópio que combina o ruído branco padrão com o random 

walk. Resultados experimentais mostram que esta mudança pode determinar resultados 

razoavelmente diferentes em relação aqueles do filtro de Kalman padrão. 

Palavras chave: Navegação Inercial, Filtro de Kalman, Determinação de Atitude, 

Variância de Allan. 

 
Abstract: This paper presents methods for attitude determination using low cost MEMS 

sensors and an Arduino One board. Kalman filters were developed to fuse the data of 

accelerometer, magnetometer and gyroscope. Accelerometer and magnetometer data 

were processed using the TRIAD method. The covariance matrices used in Kalman filter 

design were obtained from Allan variance analysis. One Kalman filter was improved 

using a random walk noise combined with the standard white noise in the gyroscope. 

Experimental results showed that this augmented filter can generate results reasonably 

different from that of the standard Kalman filter. 

Keywords: Inertial Navigation, Kalman Filter, Attitude Determination, Allan Variance. 
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1. Introduction 

Navigation is an ancient art that became a complex technique. Generally 

speaking, navigation is the determination of position, velocity and attitude 

(angular orientation) of a body with respect to a fixed reference frame (FRF). One 

of the most popular navigation techniques is related to the observation of well 

known fixed points, e.g. the stars. Nowadays, other kind of navigation is well 

spread, which is based on movable space stations, i.e. satellites. There are three 

operational global navigation satellite systems (GNSS): GPS (EUA), GLONASS 

(Russia), GALILEO (EU). GNSS have global coverage and can determine 

reasonable accurate data [1] of position and velocity, however, the acquisition of 

attitude data is not straightforward. 

 On the other hand, an inertial navigation system (INS) is an alternative 

to the GNSS. An INS is composed by an inertial measurement unit (IMU), which 

is attached to the body, and a processing unit. An IMU is composed by inertial 

sensors that detect the following physical quantities: the accelerometer measures 

the specific force (inertial acceleration less gravitational acceleration) in the body 

reference axes, or body reference frame (BRF); the gyroscope measures the 

angular velocity in the BRF. An IMU can have additional sensors, such as the 

magnetometer, that measures the local magnetic field along the BRF. The 

processing unit has a microprocessor that performs signal processing and 

executes algorithms for the determination of position, velocity and attitude 

(PVAT) from the sensor data. Theoretically, and INS can determine accurate 

estimates of PVAT, however, time correlated noises can degrade its 

performance, [2]. 

An accurate INS has high cost, however, in the last decades, low cost 

miniature inertial sensors have been developed: micro-electro-mechanical-

systems (MEMS). MEMS accelerometers, gyroscopes and magnetometers are 

well spread in many INS, they enable many day by day applications such as 

mobile phones and low cost robotics. However, these sensors, in general, have 

low accuracy and can degrade the estimation of PVAT [3]. 

This paper presents the application of some techniques for improving the 

accuracy of an INS for attitude determination using MEMS sensors. The attitude 

is determined from magnetometer and accelerometer measurements using the 
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TRIAD (triaxial attitude determination) method, [4]. A Kalman filter is  applied for 

improving the estimation in the presence of noise, combining the results of TRIAD 

with gyroscope data. The Allan variance technique is used to characterize the 

noise of the inertial sensors, giving more detailed information to design the 

Kalman filter. This development was applied to a low cost IMU with MEMS 

sensors and an Arduino One processing board. 

The remaining of this paper is divided as folows: section 2 provides a 

general view of attitude representation, attitude determination, Kalman filter and 

Allan variance, section 3 describes the process of sensor data error modeling 

and Kalman filter design, section 4 shows the experimental setup, experimental 

results and discussion, section 5 summarizes the main conclusions taken from 

the experimental work. 

 

2. Theoretical Basis 

2.1 Attitude Representation 

The attitude of a rigid body can be defined as the orientation of a BRF 

with respect to a set of 3 orthogonal axes attached to a suitable reference system. 

In most applications, the reference frame is the NED (north, east, down), where 

the x, y and z axes point to the local north, east and down directions, respectively, 

[5]. The orientation between two reference frames can be parameterized in many 

forms. One of the most intuitive and straightforward is the 3x3 transformation 

matrix, or direction cosine matrix (DCM), that converts a vector from one 

reference frame to another. A second form is the set of Euler angles that 

represents 3 successive rotations from one system to another. The most popular 

set of Euler angles involve the roll, pitch and yaw angles ( ߶ ߠ ,  and ߰ , 

respectively). Another important attitude parameterization is the quaternion, 

which is a vector of four components related to an instantaneous axis of rotation 

and a rotation angle, obtained from the Euler rotation theorem. Each attitude 

representation can be more suitable for a given problem and one can be 

converted into another. In this work, the DCM, quaternion and Euler angles were 

considered, depending on the situation. 

 The attitude kinematics describes the time evolution of the attitude from 

the angular velocity. Given the quaternion, the rotational kinematics is determined 
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by, [5]: 

̇ࢗ = ଵ
ଶ
௦ࢹ				,ࢗ௦ࢹ = ൦

0 ݌− ݍ− ݎ−
݌ 0 ݎ ݍ−
ݍ ݎ− 0 ݌
ݎ ݍ ݌− 0

൪    (1) 

where ࢗ = ࣓ is the quaternion, and ்[ସݍ	ଷݍ	ଶݍ	ଵݍ] = ்[ݎ	ݍ	݌] is the angular velocity 

vector, which is written in the BRF (T means the transpose). The attitude 

kinematics can be written in any parameterization, the main advantage of 

choosing the quaternion is the linearity of the equation and the reduced number 

of terms. 

 If the DCM is known, the quaternion can be obtained by the conversion: 

ଵݍ = ௖మయି௖యమ
ସ௤ర

, ଶݍ = ௖యభି௖భయ
ସ௤ర

, ଷݍ = ௖భమି௖మభ
ସ௤ర

, ସݍ = ± ଵ
ଶ
ඥ1 + ܿଵଵ + ܿଶଶ + ܿଷଷ         (2) 

where ܿ௜௝	is the element in the row i and column j of the DCM (rotation matrix from 

the FRF the BRF). 

 

2.2 TRIAD 

 The DCM can be determined from at least two vector observations. The 
simplest method of attitude determination from vector observations is the TRIAD 
[4]. If two pairs of unitary vectors are written as ࢘ଵand ࢘ଶin the FRF, and ࢈ଵand 
 :ଶin the BFR, then, by definition࢈

ଵ࢈ = ,ଵ࢘࡯ ଶ࢈					 =            (3)	ଶ࢘࡯

where ࡯ is the DCM. This equation can be used to determine ࡯ from the two pair 

of vectors. However, its solution is not unique, in fact, it depends on weights in 

the pairs 1 or 2. The TRIAD method states that, a balanced solution (which is 

called TRIAD3) is given by: 

ଷ்࡯ = ା࢘ା்࢈ + ்ି࢘ି࢈ + ା࢈) × ା࢘)(ି࢈ × ࢘ି)்,			࢘ା = ࢘మା	࢘భ
|࢘మା࢘భ	|

, ࢘ି = ࢘మି࢘భ
|࢘మି࢘భ|

	
       (4) 

where ࢈ା and ି࢈ are defined similarly, “×” is the cross product operator, |࢜| is 

the modulus a vector ࢜. 

 

2.3 Kalman Filter 

 The Kalman filter is a state estimator that observes the state vector of a 

system from output measurements, in the presence of measurement noise. A 

differential equation is necessary which describes the time evolution of the state 
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in the presence of process noise. The theory of Kalman filter is described in many 

textbooks, some of them focusing in applications, e.g. [1]. A short summary is 

given below. 

 The original version of Kalman filter only considers linear systems. The 

extended Kalman filter (EKF) is an adaptation for the case of nonlinear dynamic 

systems represented by: 

(ݐ)̇࢞ = ,(ݐ)࢛,࢞)ࢌ (ݐ + ,࢞)ࡳ  (5)     (ݐ)࢝(ݐ

where ࢞ ∈ ℝ௡ is the state, ࢛: [0,∞) → 	ℝ is a given driving function, ࢌ:ℝ௡ × ℝ௟ ×

[0,∞) → ℝ௡  is a vector valued nonlinear state function. ࢝(ݐ) ∈ ℝ௠  is called 

process noise, it is a white Gaussian process with zero mean and covariance 

(ݐ)ࡽ ∈ ℝ௡×௠ , the process noise covariance matrix. ࡳ:ℝ௡ × [0,∞) → ℝ௡×௠	is a 

matrix valued nonlinear function called process noise distribution matrix. 

 The measurements are state dependent and represented by the nonlinear 

output function: 

(ݐ)ࢠ = (࢞)ࢎ +  (6)     (ݐ)࢜

where ࢠ ∈ ℝ௣ 	is the vector of measured outputs, ࢎ:ℝ௡ → ℝ௣	is a vector-valued 

nonlinear output function. ࢜(ݐ) ∈ ℝ௣ 	is called measurement noise, it is a white 

Gaussian process with zero mean and covariance (ݐ)ࡾ ∈ ℝ௣×௣ , the 

measurement noise covariance matrix. 

 The Kalman filter is generally implemented in the discrete time form. The 

main notation adopted is the following: 

- ௦ܶ : sampling interval, the time length between two consecutive state 

estimations; 

 ;௞: k-th sampling timeݐ -

- ෝ࢞௞ି : predicted state at time k (ݐ௞); 

- ෝ࢞௞ା: corrected state estimate at time k; 

 ;௞ି: predicted error’s covariance matrix at time kࡼ -

 .௞ା : corrected error’s covariance matrix estimate at time kࡼ -

 The following procedure composes the k-th iteration of the EKF. An initial 

estimate is needed, as usual, the method assumes that the initial state is 

distributed according to a white Gaussian noise with zero mean. 

Prediction (time propagation) 



 
 

Revista Brasileira de Iniciação Científica, Itapetininga, v. 3, n. 2, 2016, 
Edição Especial UFABC 

31 

 Prediction of the state vector: 

ෝ࢞௞ାଵି = ෝ࢞௞ା + ∫ ,(ݐ)࢛,(ݐ)࢞)ࢌ ௧ೖశభݐ݀(ݐ
௧ೖ

   (7) 

 Prediction of the error’s covariance matrix: 

(ݐ)ࡼ̇ = (ݐ)ࡼ௞ࡲ + ௞்ࡲ(ݐ)ࡼ + ௞ࡽ
ᇱ 	 

௞ࡲ =
ࢌ߲
߲࢞ฬ࢞ୀෝ࢞ೖశ

 

௞ࡽ
ᇱ = ,ෝ࢞௞ା)ࡳ ,ෝ࢞௞ା)்ࡳ(௞ݐ)ࡽ(௞ݐ  	(௞ݐ

௞ାଵିࡼ = ௞ାࡼ + න ݐ݀(ݐ)ࡼ̇
௧ೖశభ

௧ೖ
 

 

 

(8) 

Correction (measurement update) 

 Kalman gain: 

௞ࡷ = ௞ାଵିࡼ ௞ࡴ
௞ାଵିࡼ௞ࡴ]் ௞ࡴ

் +  	௞]ିଵࡾ

௞ࡴ =
ࢎ߲
߲࢞ฬ࢞ୀෝ࢞ೖశభష

 

 

(9) 

  

Correction of the state estimate: 

ෝ࢞௞ାଵା = ෝ࢞௞ାଵି + ௞ࢠ]௞ࡷ − ෝ࢞௞ାଵି)ࢎ )]             (10) 

 Correction of the error’s covariance matrix estimate: 

௞ାଵାࡼ = ௞ାଵିࡼ ௞ାଵିࡼ௞ࡴ௞ࡷ−      (11) 

 In equation (7), the vector function ࢛(ݐ) is given by data determined from 

measurement, e.g. gyroscope. In equation (10), ࢠ௞  is the output measured by 

another instrument at time k, e.g. accelerometer and magnetometer. 

 

2.4 Allan Variance and Sensor Noise Characterization 

MEMS sensors can manifest stochastic errors, which may be unsteady 

and time correlated. In this case, the modeling of these errors can be performed 

by the Allan variance [6]. 

Random noises do not have a well defined mathematical function, but 

some statistical properties can be defined, according to the theory of stochastic 

processes. The total noise can be decomposed as the summing of several noises 

of different nature, each one having some parameters for its characterization. In 
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an inertial sensor, the main components of noise are [3]: quantization, Gaussian 

white noise, random walk, flicker noise, exponentially correlated (Markov) and 

rate ramp. The Allan variance technique can be applied to identify each portion 

of noise generated by a sensor and also to quantify their parameters. 

In the classical statistics, the variance is applied as a measure of 

dispersion, quantifying the how much some data spreads around a central point. 

This technique is useful when the data are stationary and do not posses time 

correlation. If this scenario is not valid, the Allan variance can be more 

appropriate. 

The Allan variance consists in a time domain process developed for the 

study of frequency stability of oscillators. It can be related to the spectral density 

of the signal. This correspondence is the key for identifying the different 

components of a sensor noise. 

Given a time sequence of a given signal with N points and sample time 

ts, the Allan variance consists in the division of this set according to subsets 

(groups) with n consecutive points. Each group is associated to a time interval 

T=n.ts, also called cluster time. This group has a mean value S(T). Then, the 

Allan variance of the subset of size n taken from the set of size N is given by [3]: 

(ܶ)ଶߪ = ଵ
ଶ(ேିଶ௡)

∑ (ܵ௞̅ାଵ(ܶ) − ܵ௞̅(ܶ))ଶேିଶ௡
௞ୀଵ          (12) 

where ܵ௞̅(ܶ) is the mean value of the k-th subgroup of n points (n=T/ts).  

The method of modeling a sensor noise consists in collecting the data of 

the sensor when it is stationary. Then, the Allan variance is determined for 

different values of T, obtaining the Allan variance as a function of cluster time. 

These results are drawn as a log-log plot and some asymptotes are evaluated to 

identify the noise components and their parameters, [3]. 

 

3. Method 

The concepts of section 2 were applied to develop attitude determination 

methods for an IMU with MEMS sensors. 

The TRIAD method can be applied to determine the DCM from vector 

measurements of magnetometer and accelerometer. The FRF is the NED. The 

vector unitary ࢘ଵ is the acceleration due to gravity (g); after normalization, the 

result (in the NED frame) is simply: ࢘ଵ = [0	0	1]். The measurement ࢈ଵ is the 
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acceleration due to gravity in the BRF (with normalization). The accelerometer 

can measure the specific force in the BRF, given by: ࢌ௘௕ = ௕ࢇ  ௕ andࢇ ௕, whereࢍ−

 ௕ are the body’s inertial acceleration and acceleration due to gravity written inࢍ

the BRF. If the inertial acceleration is very small when compared to g, one can 

suppose that the accelerometer only measures –gb, this is assumed in this work. 

The second vector used for attitude determination (unitary vector ࢘ଶ) is 

given from the Earth magnetic field (geomagnetic field). The geomagnetic field 

varies with position and time in the Earth atmosphere. There are many models 

that estimate this field, the most popular are WMM (World Magnetic Model)1 and 

IGRF (International Geomagnetic Reference Field)2. In these models, the input 

data are the latitude, longitude, altitude and time, the result is the local 

geomagnetic field in the NED reference frame; the units are given in nT (nano 

Testa), then, ࢘ଶ can be computed with a simple normalization. On the other way, 

the normalized vector ࢈ଶis measured in the BRF using the magnetometer. In this 

case, it is assumed that the magnetometer only measures the geomagnetic field. 

However, residual magnetization of the body and sensor can corrupt this 

measurement. In such a case, calibration is necessary. Methods of 

magnetometer calibration can be found in reference [7]. Even if a calibration is 

done, the sensor should not operate in environments where other fonts of 

magnetic fields are present. So, the assumption is made that only the 

geomagnetic field is active in the environment. 

The gyroscopic sensor measures angular velocity in the BRF. Then, the 

attitude kinematics shall be used to compute the attitude. In this paper, the 

quaternion parameterization of equation (1) is used. The quaternion can be 

converted for DCM or Euler angles using standard formulae found in textbooks. 

Note that the attitude kinematics needs an external initial condition. So, the initial 

attitude shall be known, otherwise, this method will only compute variations. This 

initial value can be determined by the TRIAD. 

Note that the TRIAD method and the attitude kinematics determine 

different estimates of the same physical quantity. Also, in practice, 

accelerometers, magnetometers and gyroscopes are corrupted by noise, as 

                                                        
1 https://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml 
2 http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html 
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discussed in section 2.4. In this kind of situation, the Kalman filter is used to 

perform sensor fusion in order to determine the best estimate in the presence of 

Gaussian white noise. However, as discussed in section 2.4, the Gaussian white 

noise is not the unique font of error in MEMS sensors. According to reference [3], 

after the Gaussian white noise, the second most important noise is the random 

walk. Fortunately, the random walk can be generated as the integral of a white 

noise. So, the Kalman filter equations can be augmented with an additional state 

variable that represents the random walk, with an additional input representing 

its generating white Gaussian noise. 

In this paper, two Kalman filters were developed. The first one only 

considers white Gaussian noises. The state update is performed by the attitude 

kinematics (equation (1)) using angular velocity measurement from the 

gyroscopic sensor. The state update is performed from the attitude calculation 

performed by the TRIAD method, which receives data from the accelerometer 

and magnetometer. The processes noise covariance matrix (Q) is constant and 

determined from the variance of the gyroscopic sensor white noise; it is a 

diagonal 3x3 matrix. The measurement noise covariance matrix (R) is constant 

and determined from an estimate of the errors in the TRIAD method, which 

depends in the white Gaussian noises of the accelerometer and magnetometer; 

it is a diagonal 4x4 matrix. 

Note that the attitude kinematics represents the attitude in means of 

quaternion, while the TRIAD determines the DCM. In order to use the TRIAD 

results in the update phase of the Kalman filter, the equation (2) is applied to 

convert the TRIAD results from DCM to quaternion. 

The second filter is an extension of the first, where a random walk noise 

is assumed in each channel (three axes) of the gyroscopic sensor. So, the noises 

assumed in the gyroscope will be standard white Gaussian noise and random 

walk. In this situation, the Kalman filter will be improved with 3 state variables in 

the state propagation equation. These new states represent the integral of white 

noises that generate the random walk. The processes noise covariance matrix is 

also augmented. It will be a 6x6 diagonal matrix. The first 3 elements in the main 

diagonal are the variances of the gyroscope white noise, while the remaining 3 

elements are the variances of the white noises that generate the random walk. 
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4. Results and Discussion 

 The experimental setup is composed as follows.  

 IMU board with MEMS sensors Sparkfun SEN-107243 containing: 3 axes 

gyroscope, 3 axis accelerometer and 3 axes magnetometer. Arduino UNO4 

microprocessor board with ATmega 328P.  The IMU and microprocessor 

communicate via I2C protocol. Figure 1 shows the IMU and Arduino boards. 

 

  
Figure 1: Sparkfun SEN – 10724 and Arduino One. 

 

 PC computer with Intel core I3 processor running Windows 7. The Arduino 

microprocessor and computer communicate via USB 2.0. The Arduino board 

is programmed using its own open-source Arduino IDE5. The Arduino board 

receives the data from the IMU and sends it to the PC via USB. The MATLAB® 

2014 software is used to read and process the data in the PC. 

 

The experimental procedures consist of two main activities: 

(1): Characterization of the sensor noises using the Allan variance; 

(2): Implementation and tests of attitude determination methods. 

4.1 Characterization of the sensor noises using the Allan variance 

 The sensor board was kept static and data was obtained for 4 hours. The 

sample time was ts = 0.02s, corresponding to 50Hz. 720,000 data samples were 

obtained (N=720,000 in Allan variance calculations). Each data sample is 

                                                        
3 https://www.sparkfun.com/products/10724 
4 http://arduino.cc/en/Main/arduinoBoardUno 
5 https://www.arduino.cc/en/Main/Software 
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composed by 9 measurements, 3 for each sensor. Although the data was 

collected for 4 hours, the maximum time T=n.ts was set to 1 hour for Allan 

variance analysis, in order to reduce the errors in large data sets [3]. The data 

were received in the PC via USB port and processed using MATLAB, where the 

Allan variance method was implemented. 

The detailed explanation about Allan variance analysis is performed in 

another paper. Figure 2 presents a general plot for the gyroscope. This figure is 

a log-log plot of Allan standard deviation (square root of Allan variance) against 

time. Results are shown for the 3 gyroscope axes: original data, simulated noises 

and theoretical standard noises. Simulated noises were generated using 

MATLAB for validating the approach. 

 
Figure 2: Log-log plot of Allan standard deviation of the gyroscope. 

The Allan variance approach led to the identification of the main noises 

of accelerometer and gyroscope. In general, the most important noises are the 

white noise and the random walk. Table 1 presents the noise parameters for the 

accelerometer. Table 2 gives the noise parameters for the gyroscope. In these 

tables, the second column shows the standard deviation of white noise, the third 

column shows the standard deviation of the white noise that generates the 

random walk. Note that the random walk was not identified in the x axis of the 

accelerometer. 

Table 1: Coefficients of the noises identified in the accelerometer. 
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Sensor axes 
 ௪௡ߪ

[݉ ⁄ଶݏ ] 
 ௥௪ߪ

[݉ ⁄ଶݏ ] 

X 2,53810ିݔଶ - 

Y 2,94810ିݔଶ 2,22810ିݔସ 

Z 3,54410ିݔଶ 7,72910ିݔସ 

 

Table 2: Coefficients of the noises identified in the gyroscope. 

Sensor axes 
 ௪௡ߪ

݀ܽݎ] ⁄ݏ ] 
 ௥௪ߪ

݀ܽݎ] ⁄ݏ ] 
X 1,12110ିݔଷ 3,87310ିݔହ 

Y 1,04610ିݔଷ 8,66910ିݔହ 

Z 9,53910ିݔସ 1,01910ିݔହ 

 

4.2. Implementation and tests of attitude determination methods 

 The attitude determination methods were implemented in MATLAB and 

Arduino. Arduino data is processed in real time and sent to the computer. 

MATLAB is used for post-processing. 

 The standard Kalman filter described in section 3 was programmed in 

Arduino. TRIAD method and the attitude kinematics alone were also developed 

and tested in Arduino. However, all of them cannot run at the same time in the 

Arduino processor. The same algorithms were implemented in MATLAB, in order 

to validate the Arduino programs. 

 The Kalman filter augmented with random walk was programmed and 

tested only in MATLAB, because this augmentation compromises the Arduino 

processing. 

 During implementation, the sensor data (scale factor, sensitivities, etc) 

were taken from the respective data sheets. Magnetometer calibration 

parameters were obtained according the procedures explained in reference [7]. 

 The attitude estimation algorithms run at 40Hz in Arduino and MATLAB. 

The process noise covariance matrices were built from data of Table 2. The 

measurement noise covariance matrix is diagonal with covariances equal to 

10ିଶ, this is a roughly estimate from the data of table 1. 

 The test procedure consisted in the following steps: 
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- The IMU was set to initial conditions close to zero: almost leveled, in order 

to get roll (߮) and pitch (ߠ) angles close to zero; heading close to north, in 

order to obtain yaw angle (߰) almost zero; 

- Three maneuvers were performed rotating the IMU manually: yaw rotation 

close to 90°, pitch rotation close to 45°, roll rotation close to 45°;  

- The same rotations were performed in the opposite order, trying to return 

the IMU to the original initial condition. 

 During the maneuver, the Arduino board computed the attitude and sent 

the data to the computer. After, the data was post-processed in MATLAB for 

validation. Figure 3 presents some results for one of these tests: roll, pitch and 

yaw angles. The Arduino board estimates the attitude in the quaternion form, but 

these data were converted to Euler angles before the generation of the figures, 

because Euler angles are better for visualization. Five results are shown:  

- Standard Kalman filter that runs in real time in Arduino; 

- MATLAB post processing: standard Kalman filter, Kalman filter augmented 

with random walk in gyroscope, TRIAD, attitude kinematics using 

gyroscope. 

 Several discussions can be developed from figure 3. The TRIAD method 

is the one that generate the noisiest results. This happens because no filtration 

is performed by this method. Instantaneous measurements from accelerometer 

and gyroscope determine instantaneous attitude values. But, note that the TRIAD 

method can determine the initial condition of the IMU ( ߮଴ ≅ ଴ߠ,5,1°− ≅

−8,2°,߰଴ ≅ 6°); 

 The gyroscope results are biased with respect to the others. This is 

expected, because the attitude kinematics starts from zero initial conditions. 

However, note that these results have less noise with respect to the TRIAD. In 

most MEMS sensors applications, the integration of gyroscope errors can 

generate divergence in the attitude calculation. However, in the time horizon of 

this experiment, the results have good behavior, without divergence; 

 Kalman filter results are a kind of weighted average between the attitude 

kinematics and TRIAD. In time 5 seconds, the estimation begins and the Kalman 

filter quickly corrects their estimates from its initial state using the TRIAD results. 

Then, the Kalman filter starts to perform estimates close to the TRIAD, but, with 
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a smaller level of noise. 

  

 
Figure 3: Attitude estimation results. 

 
Figure 4: Close view of some estimation results. 

 

 Figure 3 cannot show much difference between the 3 Kalman filter results. 

In this way, figure 4 presents a close view in some time interval. Because these 

experiments concern stochastic data, it is very difficult to establish general 

conclusions from specific cases. However, figure 4 can help one to understand 

some qualitative behavior. Different from what one could expect, the same 

program that runs in MATLAB and Arduino do not determine the same result. 
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That is: the standard Kalman filter that runs in real time in Arduino and the post 

processing in MATLAB do not determine equal paths in figure 4. Also, this 

discrepancy is not constant, sometimes increases, sometimes decreases. The 

most probable reason is the numeric methods implemented in MATLAB and 

Arduino. MATLAB software has good computational performance running in a 64 

bits computer. On the other way, Arduino microprocessor has only 16 bits, 

corresponding to numeric representation of smaller precision. However, in the 

scenario of the limitation of the Arduino microprocessor, the results seem 

reasonable. 

 Figure 4 also shows that the two Kalman filters implemented in MATLAB 

(standard and augmented with random walk) do have different responses. 

Looking all the angles, in the sample interval shown, the difference is roughly 

between 0.5 and 6 degrees. It is not easy to demonstrate which estimate is better. 

This can be done with an additional measurement of a more accurate sensor. 

However, qualitatively, it is possible to argue that the insertion of random walk in 

the Kalman filter can determine reasonably different results. 

 

5. CONCLUSION 

 This paper presents methods for attitude determination from MEMS 

sensors using a low cost processor. An Arduino One board was used to read a 

low cost MEMS IMU and compute attitude estimation algorithms. 

 The method TRIAD was used to determine attitude from accelerometer 

and magnetometer measurements. The integration of quaternion kinematics was 

used to compute the attitude from gyroscopic measurements. These two 

methods were fused using the Kalman filter.  

 A standard Kalman filter and an augmented Kalman filter were studied. 

The augmented filter has additional state variables that represent the random 

walk in the gyroscope. Allan variance technique was used in order to identify and 

determine the parameters of the noises present in the sensors. 

 Experimental results showed that the Arduino One board is suitable to run 

the estimation algorithms up to 40Hz. However, the augmented Kalman filter 

compromises the computational performance. But the other algorithms can run 

with reasonable precision when compared to the results given by a standard PC 
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computer. 

 The experimental results also shown that the augmentation of the Kalman 

filter with gyroscope random walk noise can generate significant differences in 

the attitude estimation results. However, additional tests are recommended to 

investigate the exact influence of these changes in the accuracy. 
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