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Resumo Este trabalho apresenta os fundamentos teóricos para a descrição do 
movimento balístico sob influência do arrasto desenvolvido por dois tipos de 
foguetes artesanais: os impulsionados por água pressurizada e os propelidos 
pelos gases liberados na queima de combustível sólido. Os primeiros 
desenvolvem velocidades baixas (� 10 �/�) e, por isso, sofrem ação de uma 
força de arrasto linear com �. Os segundo adquirem velocidades iniciais altas o 
suficiente para requerer a modelagem da força de arrasto como quadrática na 
velocidade. Resolvemos em detalhes as equações de Newton nos dois casos, 
construindo as funções horárias das posições e as equações de trajetória. 
Obtemos as funções da velocidade inicial do projétil e do coeficiente de arrasto 
para baixas velocidades em função do tempo de voo do foguete e de seu 
alcance. Mostramos que o alcance dos foguetes é menor na presença do arrasto 
do que na ausência dele. 
Palavras-chave: movimento balístico, coeficiente de arrasto, alcance para altas 

e baixas velocidades. 
  

Abstract This work lays down the theoretical foundations for the description of 
ballistic motion under the drag force of two types of handmade rockets: the ones 
propelled by pressurized water and those set into motion by solid propellant 
rocket boosters. Water rockets develop low velocities (� �� �/� ) and are thus 
subjected to a drag force linear in �. Solid rocket boosters have velocities high 
enough to require the modelling with a drag force quadratic in �. We apply 
Newton laws of motion and build the equations for horizontal and vertical 
displacements as functions of time. We calculate the equations for trajectories on 
both cases. The initial velocity of the rocket and the drag coefficient for low 
velocities are given in terms of the range and time of flight. It is shown that the 
range is smaller in the presence of drag.  
Keywords: ballistic motion, drag coefficient, range for low and high velocities. 
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1. Introdução 

As disciplinas de mecânica básica nos cursos de engenharia, física e 

matemática geralmente abordam o lançamento oblíquo de um corpo sem 

considerar a resistência do ar. Isso provoca um distanciamento com o caso real, 

onde a presença do ar influência na trajetória. 

Existe uma maneira experimental relativamente simples de estudar a 

trajetória balística de projéteis: construir foguetes artesanais propelidos à água 

(CUZINATTO et. al., 2015) ou a combustível químico (PIZZO, et. al., 2015). 

Esses foguetes terão seus movimentos descritos pelas leis de Newton e seus 

alcances afetados pela presença a força de arrasto. O objetivo central desse 

trabalho é descrever matematicamente como essa força de arrasto age sobre os 

projéteis, modificando a curva parabólica do movimento oblíquo na ausência do 

atrito com o fluido ambiente (HALLIDAY et. al, 2008). 

A força de arrasto aparece na mesma direção do movimento, porém em 

sentido oposto a ele, levanto ao retardo do movimento corpo. A força de arrasto 

é representada genericamente pela equação: 

 

|��|= �� + ��� ,  (1) 

 

sendo a e b constantes que dependem das propriedades do corpo e do fluido e 

v a velocidade do corpo. Em velocidades baixas, menores que aproximadamente 

24m/s (MARION e THORNTON, 2004), a equação genérica do arrasto (1) reduz-

se à parte linear; i.e. desconsidera-se o termo quadrático na velocidade.  Esse 

termo quadrático torna-se importante a velocidades maiores, entre 24m/s e cerca 

de 300m/s (velocidade do som), caso em que tomamos apenas o segundo termo 

do lado direito de (1). 

Neste trabalho, teremos como objetivo estudar o lançamento oblíquo de 

foguetes de forma a encontrar a equação que define a constante de arrasto � 

considerando duas situações: a primeira é aquela em que o projétil desenvolve 

baixas velocidades (� �⁄ ≪ 1), quando vale |��|= ��; a segunda é o caso em 

que |��|= ��� que vale para � �⁄ ≫ 1.  
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2. Estudo físico do Movimento Oblíquo dos Projéteis com baixas 

velocidades 

O desenvolvimento dessa seção é baseado na Seção 2.7 da Ref. 

(MARION e THORNTON, 2004). Percorreremos este caminho para fixar a 

notação e preparar o leitor para a contribuição nova deste trabalho que é a 

equação para a constante de arrasto � em função do alcance do projétil e do seu 

tempo de voo. 

 

2.1. As funções horárias das velocidades e das posições 

Um projétil que é lançado em ambiente aberto a um ângulo inicial �� com 

a horizontal, está submetido a um movimento denominado oblíquo. Neste caso, 

serão gerados dois tipos de movimento simultâneos: o vertical (subida e descida) 

e o horizontal (corpo segue em sentido de � para frente, conforme a Figura 1). O 

projétil sai com uma velocidade inicial de módulo �� e está sujeito à força 

gravitacional ��, na vertical para baixo, e à força de arrasto �� na direção de � �⁄ . 

 

 

Figura 1: Vetores relevantes para o estudo do movimento oblíquo de um projétil. 

 

Como o movimento oblíquo tem componentes nas direções horizontal e 

vertical, surge à necessidade de decompormos o estudo do movimento em dois 

eixos � e �. 

Analisaremos primeiramente a componente do movimento ao longo do 

eixo �. Nesta direção, a única força atuante no sistema é a componente � da 
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força de arrasto, dada por ��� =  ����, em que � representa a constante de 

arrasto, � a massa e �� é a componente da velocidade no eixo �. A segunda 

Lei de Newton,  

 

� = �� ,  (2) 

�� = ���  (3) 

 

com �� =
����

��
, na direção do eixo � dá: 

 

���

��
=  ��� 

 
 

�
���

��
= � � �� 

 
 

ln�� =  ��+  �� .  (4) 

 

A constante de integração �� é encontrada a partir da condição inicial       

��(�= 0)= ��� =  �� cos��. Isto significa que o projétil está em repouso na 

origem no instante inicial. De fato,  

 

 ln��� =  � 0 +  ��   

 �� = ln���.  (5) 

 

Substituindo (5) em (4), encontramos:  

 

ln�� =  ��+ ln���    

ln 
��

���
= �� 

 
 

���� =
��

���
 

 
 

�� = ���  ���� ,  (6) 

 

que é a equação da velocidade do projétil. Como �� = ��/��,  
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� �� = � ���������  
 

 

� =
���

�
���� + �₂  .  (7) 

   

Impondo, na equação (7), a condição inicial de que o projétil está na origem do 

sistema de eixos no instante inicial, �(�= 0)= 0, determinamos a constante de 

integração �� = ��� �⁄ . Com isso, 

 

� =
�� cos��

�
(1 ����) , 

 
(8) 

 

que é então a equação que descreve o movimento horizontal de um projétil 

submetido a força de arrasto. 

Analisaremos agora a componente do movimento no eixo vertical � 

(Figura 1). Existem duas forças que atuam nesta direção, a componente vertical 

da força de arrasto ��� =  ����  e a força peso � = �� sendo � a magnitude 

da aceleração gravitacional.1 O sinal negativo em ��� aparece porque o arrasto 

é sempre oposto à direção do movimento, direção esta determinada por �� . Note 

como isso é consistente: quanto o movimento do projétil na direção � é para 

cima, a velocidade é positiva e o sinal negativo de ��� indica que a força é para 

baixo; por outro lado, quando o movimento do projétil na direção � é para baixo, 

a velocidade é negativa (variações negativas da posição no tempo), o sinal 

negativo na equação de ��� cancela o sinal negativo de �� , levando a um sinal 

positivo global, o qual indica que a força é para cima (contrária ao movimento 

descendente, portanto). O sinal é negativo em �, pois a força peso é sempre 

vertical e para baixo. Dito isso, a 2ª Lei de Newton aplicada à direção � dá: 

  

 �� = ��� + � = ���  . 

 ��  = ��� � .  (9) 

                                                             
1 Note que a constante de arrasto k é tomada como a mesma em ambas as 

direções do movimento, i.e. � = �� = ��. Isso é coerente contanto que o movimento 
aconteça em um meio homogêneo, o que é perfeitamente razoável para o ar nas 
imediações da superfície. 
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Como �� =
���

��
, temos: 

 

�
���

�

���
� + �

��

���

= � ��
�

�

 , 
 

(10) 

 

onde adotamos a condição inicial ��(�= 0)= ��� = ��  sin�� e usamos ��
� no 

argumento da integral do lado direito de (10) apenas para evitar confusão com o 

limite superior de integração �� = ��(�). Resolvendo a integral (10) pelo método 

da substituição de variáveis,2 obtemos 

 

�� =
�

�
+

���� + �

�
���� . 

 
(11) 

 

Vamos encontrar a função �(�) do deslocamento vertical, empregando 

�� =
��

��
 na equação. (11). Fixamos o sistema de eixos na origem da trajetória do 

projétil, de modo que a altura inicial do movimento é nula: �(�= 0)= �� = 0. 

Temos:  

 

∫ ����

��
= ∫ �

�

�
���

�

�
+

���� � �

�
∫ �����

��
�

�
  

� =
(��� sin�� + �)

��
 (1 ����)

��

�
  , 

 
(12) 

 

que é  equação que descreve o movimento na vertical. 

Temos agora as duas equações para as funções horárias do projétil. 

Podemos encontrar uma equação que descreva a curva no espaço descrita pelo 

projétil; trata-se da equação da trajetória � =  �(�). Essa função é obtida 

isolando o tempo da equação do deslocamento horizontal (8),  

 

                                                             
2 Sugerimos a troca de variáveis: � = ���

� + �. 
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�=
1

�
���

1

1
��

�� cos��

� 

 

(13) 

  

e substituindo na função horária das posições na vertical (12). O resultado é: 

 

� = �tan�� +
�

��� cos��
�� +

�

��
���1

��

�� cos��
� . 

 
(14) 

 

Esta equação fornece as curvas da Figura 2 para diferentes valores de �. Elas 

representam a trajetória do projétil sujeito à força de arrasto linear no módulo da 

velocidade. 

 

 

Figura 2: Construção das trajetórias de um projétil sob ação da força de arrasto linear em � para 

diferentes valores do parâmetro de arrasto �. [Curvas análogas às que aparecem na Fig. 2.8 da 

Ref. (MARION e THORNTON, 2004)] Para a construção das curvas nesta figura, usamos as 

condições iniciais �� = 45°, �� = 10 �/�, �� = �� = 0 bem como � = 9,81 �/��. Enfatizamos que 

o índice 0 indica que as quantidades são calculadas em �� = 0. 

 

Observando a Figura 2 concluímos que a trajetória do movimento para 

� =  0 é uma parábola. Isso é confirmado pela equação da trajetória do 

movimento oblíquo sem arrasto (HALLIDAY, et. al, 2008), 

 

� = tan���
�

���
������

�� .         (sem arrasto)  (15) 
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Não fizemos a dedução dessa equação aqui, mas ela pode ser obtida de (14) no 

caso limite em que o arrasto é muito pequeno, i.e. � < <  1. De fato, nessa 

circunstância, � =
��

�0 cos��
 pode ser considerado pequeno, de modo que podemos 

usar a aproximação 

 

ln(1 + �)= �
��

2
+ �(��)          |�|≪ 1 , 

 
(16) 

 

na equação (14). Então, cancelamento de termos lineares em ��� leva à 

equação. (15).  

As equações. (3), (6), (8), (9), (11), (12) e (14) caracterizam 

completamente o movimento oblíquo com arrasto no regime de baixas 

velocidades do projétil. Convém comparar essas equações com o caso do 

movimento oblíquo sem arrasto. Para conveniência do leitor, isso é feito na 

Tabela 1.  

 

Tabela 1: Equações para o movimento bidimensional com e sem a arrasto. 

Movimento Oblíquo com � = � Movimento Oblíquo com � ≠  �,� < <  1 

 Eixo � Eixo � Eixo � Eixo � 

Aceleração �� = 0 �� = 0 �� = ���  ��  = ��� � 

Velocidade �� = ��� �� = ��� �� �� = ���  ���� �� =
�

�
+

���� + �

�
���� 

Deslocamento � = �� + ���� � = �� + ����
1

2
��� � =

�� cos��

�
(1 + ����) � =

(��� sin�� + �)

��  (1 ����)
��

�
 

Equação da 
Trajetória 

� = tan���
�

2��
�������

�� � = �tan�0 +
�

��� cos�0
�� +

�

��
���1

��

�� cos�0
� 

Tipo de curva Parabólica Figura 2 

 

Apesar da descrição físico-matemática do movimento estar completa, é 

interessante obter uma equação para o alcance �’ do projétil em função do tempo 
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 �� de voo, pois essas quantidades são facilmente acessíveis 

experimentalmente. 

 

2.2. O alcance �’ do projétil em função do tempo de voo ��. 

 

O alcance de um projétil em movimento oblíquo é medido como a 

distância horizontal � = � �� entre o ponto de partida e o ponto de impacto. 

Nessa definição de alcance, a altura �� do ponto de partida de coordenada 

horizontal �� deve ser a mesma altura � do ponto de impacto de coordenada 

horizontal � = �. Se o sistema de eixos é fixado no ponto de partida: �� = �� =

0. Usando essas informações nas equações da Tabela 1 para o movimento sem 

arrasto � =  0, temos: 

 

�

� = �� cos���

 0 = �� sin�� �
1

2
��� 

 

(17) 

. 

que leva à equação para o alcance em função da velocidade inicial 

 

�(��)=
��

�

�
sin(2��)          (� = 0), 

 
(18) 

 

e conduz à expressão do alcance em função do tempo de voo: 

  

�(�)=
��

� �����
                     (� = 0).  (19) 

  

O alcance no caso do movimento com arrasto (� ≠ 0) será denominado 

de �’ para evitar confusão com as quantidades das duas equações acima. Da 

mesma forma, chamaremos de �’ o tempo de voo no caso do movimento oblíquo 

com arrasto. A primeira ideia que poderíamos ter para escrever �’(��) seria isolar 

�= �’ na equação (12), com � = 0, 
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�� =
(��� sin�� + �)

��
�1 �����

�, 
 

(20) 

 

para, depois, substituir na equação (8) de � = �’. Porém a equação (20) é 

transcendental em �′ Só seremos capazes de encontrar a expressão para �’(��) 

ao resolvermos (20) para �’ aproximadamente.  

O que segue é chamado de método perturbativo,3 e requer que o arrasto 

seja pequeno, i.e. � < < 1. Nessa circunstância, o argumento da exponencial em 

(12) é também pequeno; consequentemente essa função pode ser expandida 

em sua série de Taylor (STEWART, 2010) de acordo com: 

 

�� = �
��

�!

�

�� �

= 1 + � +
�²

2!
 +  

�³

3!
+ �(��). 

 

(21) 

 

Fazendo a expansão de �����
 de acordo com (21), mantendo termos até a ordem 

( ���)� e substituindo o resultado em (20), temos: 

 

�� =
2�� sin��

�
�

1

1 +  
 ��� sin��

�

� +
1

3
����. 

 

(22) 

 

Agora, podemos observar que a expressão entre parênteses na equação 

(22) tem a forma (1 ± �)��. Essa forma possibilita a simplificação de (22) através 

da expansão em série de Taylor:4 

 

(1 ± �)�� = 1 � + �� �� + ,  (23) 

 

desde que � ≪ 1 onde, para nós, � =
 ��� �����

�
 é função de �. Isso implica a 

condição:  

                                                             
3 Um outro método possível obter T’ da equação (12) é o método numérico. 

Porém, preferimos adotar a abordagem analítica neste texto tanto quanto possível. 

4 Conforme apêndice D.8 da Ref. (MARION e THORNTON, 2004). 
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� ≪
�

 �� ����
.  

(24) 

 

Substituindo a forma (23) em sua equação de origem (22) e mantendo a 

expansão até o termo quadrático, chegaremos a: 

 

�� = �
���

3

2 ��
� sin� �

��
� � +  

2 �� sin�

�
 +

2 ��
� sin� � 

��
�� , 

 
(25) 

 

O último termo de (25) vai com �� e, como � ≪ 1, é desprezível frente aos 

demais termos. Por isso, escrevemos: 

 

�� = �
���

3

2 �0
2 sin2 �

��
� � +  

2 �0 sin�
�

   
 

(26) 

 

Ao tomarmos � = 0 em (26), obtemos: 

 

�� =
2� �����

�
≡ � , 

 
(27) 

 

que é a equação do tempo final de voo de um projétil no movimento sem atrito 

(MARION e THORNTON, 2004). Assim, podemos confirmar que as 

aproximações feitas estão válidas. Outra consequência desse fato é que � é uma 

primeira aproximação para o tempo de voo �� do movimento com arrasto. Esse 

fato pode ser usado no lado direito da equação (26): substituindo �� = � no 

parênteses de (26) leva a:5 

 

�� =  � �1
� �����

3�
��, 

 
(28) 

                                                             
5 Equação (26) é uma equação do segundo grau em ��. Uma alternativa a essa 

técnica de fazer �� = � no lado direito de (26) é resolver diretamente a equação do 
segundo grau e manter apenas termos lineares em  �. Isso leva ao mesmo resultado 
que (28). 
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que é expressão aproximada do tempo de voo para pequenos valores de �. 

 O alcance �� do movimento oblíquo com arrasto é o valor de � quando o 

tempo de voo é �= �� na equação (8). Usando a equação (21) em (8) com 

termos de até segunda ordem na expansão encontramos: 

 

�� = � �1
4� sin��

3�
��, 

 
(29) 

 

onde, 

 

� =
��

�

�
sin(2��) , 

 
(30) 

 

é a equação para o alcance do movimento oblíquo sem arrasto (� = 0). 

A equação (29) mostra que o alcance de uma trajetória com arrasto é 

menor do que a mesma sem arrasto (MARION e THORNTON, 2004): vide sinal 

negativo no parênteses e também a Figura 2. 

As equações (28) e (29) para �� e �� caracterizam completamente o 

movimento com arrasto para � ≪ 1. Porém, ambos �� e �� dependem da 

velocidade inicial do projétil ��. Essa quantidade não é acessível facilmente do 

ponto de vista experimental. Geralmente, medimos facilmente ��, �� e ��, mas 

não ��. Por isso, as equações (28) e (29) não são as mais adequadas para 

calcularmos o coeficiente de arrasto �. Para esse fim é mais conveniente 

encontrar uma expressão do tipo � = �(��,��,��). A determinação dessa 

equação para � passa pelo cálculo da expressão de �� em termos de ��, �� e ��. 

É o que fazemos à seguir. 

Sabemos que as equações (28) e (29) possuem como condição de 

validade o vínculo (24), iremos encontrar uma forma de determinar o valor de � 

e �� considerando esta restrição. Para isso, vamos isolar o termo � da equação 

(28) para substituí-lo em (29). Então, teremos uma expressão do segundo grau 

variável em ��, na forma: 
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3

�
 (2����������)��

� (4����� ��)�� + �� = 0 . 
 

(31) 

 

Pela fórmula de Bhaskara teremos duas raízes reais para (31): 

 

�� =
���

3�����
�1 ± � 1

3��tan��

2����  � . 

 

(32) 

 

Para decidir qual sinal é mais adequado nos colchetes da equação (32), é 

necessário estudar a consistência dessa equação com o caso sem arrasto. 

 De fato, para � = 0, �� = � e �� = �, c.f. equação (29) e (30). Nesse 

caso, (32) fica:  

 

�� =
��

3�����
�1 ±

1

2
� . 

 
(33) 

 

Apenas a escolha do sinal positivo em (33) pode levar à expressão de � 

consistente com a equação (27). Por isso, o sinal negativo deve ser desprezado. 

Logo, em vez de (32), vale: 

 

�� =
���

3�����
�1 + � 1

3��tan��

2����
 � . 

 

(34) 

  

Substituindo (34) em (28) e isolando �, encontramos: 

 

� =
3�

� �����
 �1

���

2� �����
� ,  

 
(35) 

 

que são as equações que precisamos para obter a velocidade inicial e o 

coeficiente de arrasto no movimento oblíquo do projétil como função de ��, �� e 

��. Enfatizamos que as aproximações (34) e (35) valem para � ≪ 1, o que 

equivale a dizer que a condição (24) deve ser satisfeita. As equações (34) e (35) 

são muito úteis do ponto de vista experimental: em um trabalho futuro, 
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pretendemos medir ��, �� e �� em lançamentos de foguetes de garrafas PET 

propelidos à água (usando cronômetro, fita métrica e transferidor) para, então, 

determinar o valor do coeficiente �. 

 

3. Estudo físico do Movimento Oblíquo dos Projéteis com altas 

velocidades 

 

Nesta etapa do estudo, vamos detalhar as equações para o movimento 

oblíquo com arrasto válido para velocidades entre 24 �/� e  300 �/�  (MARION 

e THORNTON, 2004), que levam a �� ∝ ��. Um trabalho mais recente abordando 

este tema foi realizado por Chudinov (2013), que tomamos como referência 

assim como outros artigos salientados no decorrer do estudo. 

Um projétil é lançado sob um determinado ângulo �� com a horizontal 

em um ambiente aberto. Considerando apenas as forças de arrasto e peso, 

vamos estudar este movimento de modo a encontrar a equação da velocidade e 

da posição ao longo de toda a trajetória. 

 

 

Figura 3: Representação esquemática da trajetória de uma projétil com movimento bidimensional 

e força de arrasto proporcional ao quadrado da velocidade. ��� é a força gravitacional; ����, a força 
de arrasto e ���, a velocidade do projétil. 

 

Na Figura 3 podemos observar que apenas a força peso está dirigida ao 

eixo � e a força de arrasto �� juntamente com a velocidade � vai apresentando 

ângulos diferentes com a horizontal (eixo �) conforme caminha pela trajetória 
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balística, logo, temos � = �(�). Em vez de realizar um estudo da decomposição 

dos vetores na vertical e horizontal, vamos traçar novas coordenadas para o 

sistema, c.f. figura 4, sendo que o versor �� se orienta no sentido da velocidade 

do projétil e o versor � é perpendicular a ��, ou seja, forma um ângulo de 90° com 

��.  
 

 

Figura 4: Representação dos eixos fixados no projétil. 

 

Como o projétil possui altas velocidades, a equação geral (1) para o 

módulo da força de arrasto pode ser aproximada pelo segundo termo: 

 

�� = ���� ,  (36) 

 

onde � tem unidades de inverso de comprimento (��� no S.I.). Vamos iniciar os 

estudos pelo eixo da velocidade ��. Na Figura 4, observamos duas forças 

envolvidas na resultante |��|= �|��|: a componente da força peso ao logo do 

eixo de �: ���, e a força de arrasto ��; logo: 

 

�� �� = ��� 

���� �����= �
��

��
 , 

 
(37) 
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sendo ξ  o ângulo compreendido entre o eixo de �� e a força peso, como indicado 

na Figura 5. Note que � pode ser entendido como:  

 

ξ=  90 � ,  (38) 

 

em que � é o ângulo da trajetória em relação à horizontal. 

 

 

Figura 5: Representação das forças, suas componentes e dos ângulos � e �. 

  

Assim, substituindo (37) em (36) e realizando algumas simplificações com 

equações trigonométricas (cosseno da soma de dois arcos), chegamos a: 

 

��

��
= � sin� ���.  (39) 

 

Voltamo-nos agora ao eixo de ��. A única força nesta direção é a 

componente �� da força da gravidade, assim: 

 

�����= ��� ,  (40) 
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sendo ��  a aceleração que possui direção perpendicular a velocidade. 

Substituindo a equação. (38) em (40), usando � = �� e empregando a regra do 

seno da soma de dois ângulos, podemos chegar a: 

 

�����= ��  .  (41) 

 

 

Figura 6: Representação da analogia do movimento circular uniforme de uma partícula de massa 

m (esquerda) com o movimento oblíquo de um projétil de massa m (direita). A analogia 

estabelece o método do hodógrafo: a equação (43) decorre de (42). 

 

 No movimento circular uniforme (MCU), a velocidade � tangencial a 

trajetória circular da partícula de massa � depende do módulo da velocidade 

angular � =
��

��
 e do raio � da trajetória conforme  

 

 � = ��.  (42) 

 

No caso do MCU, o vetor radial � é posicionado na origem dos eixos � e �, e � 

é o ângulo entre o eixo � e a direção radial �. Ademais, vale � =
��

��
. 

 Para o nosso movimento oblíquo, é o vetor velocidade � que faz um 

ângulo � com o eixo �. Além disso, vale �� =
��

��
. Por analogia à (42) deve valer: 

 

 �� = ��   (43) 
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onde, aqui também, � =
��

��
 (o ângulo do movimento oblíquo é o mesmo do caso 

do MCU). A técnica que permite obter (43) a partir de (42) é chamada de método 

do hodógrafo (NUSSENZVEIG, 2004).  

 Substituindo (43) em (41), temos: 

 

��

��
=

� cos�

�
 . 

 
(44) 

 

As equações (39) e (44) formam um sistema de equações diferenciais 

de segunda ordem com coeficientes não constantes: 

 

  
��
��

= � sin� ��2

��
��

=
� cos�

�

 (45) 

 

Se formos capazes de resolver este sistema, encontraremos as funções 

�(�) e �(�). Com elas, é possível determinar as funções horárias das posições 

horizontal �(�) e vertical �(�). Isso é verdade pois, por um lado, 

 

��

��
= �� , 

 
(46) 

 

e, por outro lado, �� é a projeção do vetor � ao longo do eixo � com o qual � faz 

o ângulo � (Figura 7): 

 

�� = � cos�     (47) 
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Figura 7: Decomposição da velocidade com a horizontal e vertical de acordo com o ângulo. 

Logo,  

 

  
��

��
= �(�)cos�(�) , 

 
(48) 

 

cuja integração leva à função �(�) desejada. 

 Analogamente, 
��

��
= �� = � sin�, i.e. 

 

��

��
= �(�)sin�(�) , 

 
(49) 

 

que, quando integrada, leva à �(�). 

 Passamos à tarefa de integrar o sistema (45) para obter �(�) e �(�), 

percebendo que é possível escrever � = ���(�)�, ou seja, vale a regra da 

derivação implícita 

 

 
��

��
=

��

��

��

��
  , 

 
(50) 

  

 substituindo (39) do lado esquerdo de (50) e inserindo (44) do lado direito de 

(50), temos:  
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1

�
 
��

��
 = ����+

��²

�����
  , 

 
(51) 

 

para integrar essa equação diferencial de �(�) é conveniente reescrevê-la como 

(TIMOSHENKO e YOUNG, 1948): 

 

��

��
cos� + �

�

��
(cos�)=

���

�
 , 

 
(52) 

 

onde reconhecemos a regra da derivação do produto (FLEMMING, 2006). Logo, 

 

� �(� cos�)= ����� .   (53) 

 

  Dividindo (53) por , ��
�  temos: 

 

�(� ����)

(� ����)�  =
�

�

��

���� � 
 ,  

(54) 

 

que pode ser integrada membro a membro. Usaremos a condição inicial �(��)=

��. Do lado esquerdo de (54) aparece a integral: 

 

 �(� cos�)= ∫
��

� �

� ����

�� �����
=

� (� �� �)

(��� �)
�

� � �� �����

� ����

=
�

�
�

�

�� ���� �

�

��
� ���� ��

� , 
 

(55) 

 

onde usamos a definição � = � cos�. O lado direito de (54) é resolvido pela 

técnica de integração por partes: 

 

�(�)= �
��

cos� � 

�

��

= � sec� � �� = sec� tan�|��

�

�

��

� (sec� � sec�)��

�

��

 

 

(56) 

 

A integral de sec� �  aparece dos dois lados de (56) com sinais opostos. Isolando-

a do lado esquerdo e dividindo a equação resultante por dois: 
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 �(�)=
�

�
sec� tan��

��

�

+
�

�
ln(sec� + tan�)�

��

�

,        
 

(57) 

 

onde usamos,  

 

 ∫ sec���
�

��
= ln(sec� + tan�)|��

�  .             (58) 

 

 Este último resultado pode ser obtido mediante a mudança de variáveis        

� = sec� + tan�. A equação (57) pode ser facilmente rescrita como: 

 

 �(�)=
1

2
�

sin�

cos� �
+

1

2
ln

1 + sin�

1 sin�
�

1

2
�

sin��

cos� ��
+

1

2
ln

1 + sin��

1 sin��
� . 

 
(59) 

 

 Substituindo (55) e (59) em (54), obtemos finalmente �(�): 

 

 �2 cos2 � =
�0

2

1

cos2 �0
+

��0
2

� ��
sin��

cos� ��
+

1
2 ln

1 + sin��
1 sin��

� �
sin�

cos� �
+

1
2 ln

1 + sin�
1 sin���

 

 

 

(60) 

ou seja, 

 

�(�)= �� �
cos� �

cos� ��

+
���

�

�
cos� � ��

sin�0

cos2 �0
+

1

2
ln

1 + sin�0

1 sin�0
�

�
sin�

cos2 �
+

1

2
ln

1 + sin�

1 sin�
���

��/�

  

 

(61) 

 

 Substituindo (61) em (44) encontramos a equação diferencial para �(�), 

 

 
��
��

=
� cos� �

��
�

1

cos� ��
+

���
�

�
��

sin�0

cos2 �0
+

1

2
ln

1 + sin�0

1 sin�0
� �

sin�

cos2 �
+

1

2
ln

1 + sin�

1 sin�
��  , 

 

 

(62) 

 

cuja solução não pode ser encontrada analiticamente. Dessa forma, por meio do 

software Wolfram Mathematica, recorremos ao método numérico e encontramos 
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a solução da equação �(�) dada pela Figura 8. Tomamos        � = 9,81 �/��  e 

consideramos como condições iniciais  �(0)= �� = 0, �(��)= �� = 10 �/�, �� =

45°=
�

�
 . 

 

 

Figura 8: Curva da função �(�) para o movimento oblíquo com arrasto quadrático na velocidade. 

 

 Da Figura 8, vemos que � decresce com o tempo para um lançamento 

oblíquo para cima. Isto é esperado: o ângulo do vetor velocidade com a 

horizontal varia ao longo da trajetória oblíqua para manter  � sempre tangente à 

curva descrita pelo corpo. Pela condição inicial imposta, o projétil inicia seu 

movimento com 45° (�/4 =  0.79) em relação a horizontal e tende a diminuir este 

valor até 0°, onde o foguete atinge sua altura máxima e a componente � da 

velocidade se anula (o projétil pára de subir), para � 0,7 �. A partir desse 

instante, o projétil inicia seu movimento de queda, o vetor velocidade aponta na 

diagonal para baixo, e o ângulo terá valores negativos (pois é contado no sentido 

anti-horárioa partir da horizontal).  

 O próximo passo é inserir a solução numérica de �(�) na equação 

diferencial (39) para �(�),  

 

��

��
+ ��� = � sin�(�) .  

(63) 

 

Esta equação é ordinária (com derivada total, não parcial), não linear (��) e não 

homogênia ( � sin� ). Por não ser possível encontrarmos sua solução analítica, 
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novamente recorremos ao software Wolfran Mathematica 10.4, que nos dá a 

curva de �(�) apresentada na Figura 9. 

 

 

Figura 9: Curva de �(�) para o movimento oblíquo com força de arrasto quadrática na velocidade. 

 

Na Figura 9 observamos que o foguete inicia seu movimento a uma 

velocidade 10 �/�, em acordo com a condição inicial adotada: �� = 10 �/�. Note 

que a magnitude da velocidade decresce até o instante � 0,7 �. Isso é 

compreensível: até esse instante o projétil está na parte ascendente da trajetória 

e a componente vertical da velocidade ��  diminui,6 levando ao decréscimo de 

� = � �� + �� . A componente ��  torna-se zero na altura máxima, onde � = 0 e 

quando � 0,7 �. A partir daí, o projétil começa a cair, descrevendo a trajetória 

descendente, na qual ��  aumenta sob ação da gravidade, levando ao aumento 

de magnitude de � . 

 Substituirmos, agora, o resultado para �(�) da Figura 9 na equação (48),  

 

 �� = �(�)cos�(�) �� ,  (64) 

 

                                                             
6 Não é apenas ��  que decresce ao longo da curva ascendente. A componente �� também 

diminui devido à desaceleração impressa pela força de arrasto. 
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e integramos numericamente para obter a função �(�) exibida na Figura 10. 

Usamos �(��)= �� = 0 como condição inicial do processo de integração. 

 

 

Figura 10: Curva do deslocamento horizontal �(�) do projétil no movimento oblíquo sob a força 

de arrasto quadrática na velocidade (curva azul) e do movimento oblíquo sem qualquer força 

de arrasto (curva laranja). 

 

É observado na Figura 10 que o valor de � aumenta sempre, o que é 

esperado para o movimento oblíquo progressivo executado pelo projétil. Para 

efeito de comparação, a Figura 10 também mostra o gráfico da função �(�) para 

o movimento oblíquo sem arrasto, que deve ser uma reta (pois, nesse caso, � =

�� + ���). Veja que o valor de x do caso com arrasto é sempre menor (t maior 

que cerca de 0,5 s) ou igual (t menor que aproximadamente 0,5 s) ao valor de x 

para o caso sem arrasto: o alcance do projétil é menor quando uma força 

resistiva age sobre ele. 

O mesmo procedimento é realizado para obter �(�), ou seja, vamos 

substituir �(�) e �(�) – Figuras 8 e 9 – em (49), 

 

�� = �(�)sin�(�) ��   (65) 

 

e integramos numericamente os membros, resultando na curva de �(�) da Figura 

11. 
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Figura 11: Valores resultantes do método numérico da Equação (65). 

 

A Figura 11 mostra que a altura máxima atingida pelo projétil no caso com 

arrasto é menor do aquela alcançada no movimento oblíquo sem arrasto. De 

fato, os picos das curvas tem posições verticais distintas. 

 Por último, usamos as funções representadas nos gráficos das Figuras 

10 e 11 para construir os gráficos de trajetórias, � versus �, Figura 12. 

 

 

Figura 12: Curvas da trajetória de um projétil para altas velocidades considerando arrasto. 

 

Fazendo uma comparação entre as curvas com arrasto e sem arrasto, 

Figura 12, vemos que a curva sem arrasto é identificada como uma parábola, 

conforme a Tabela 1. Ademais, a curva com arrasto é uma “parábola deformada”, 
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assimétrica em � e mais achatada em �, visualizada abaixo da parábola. Isso é 

valido pois o valor de � é menor para movimento com arrasto e o valor de � 

também (Figuras 9 e 10), uma vez que a força de arrasto influencia no  (sentido 

contrário do) movimento tanto na componente vertical quanto na horizontal. 

As trajetórias da Figura 12 (do movimento sem arrasto e do movimento 

com arrasto sob altas velocidades), podem ser comparadas com as curvas da 

Figura 2, apresentadas na Seção 2.1, para o movimento com arrasto em baixas 

velocidades. A Figura 13 executa essa comparação. As condições iniciais para 

�� = 10 �/� e ângulo �� = 45° são as mesmas para todos os tipos de 

movimento; a constante de arrasto linear em � é tomada como � = 0.04 ���; a 

constante de arrasto quadrático em � é escolhida como � = 0.01 ���. 

 

 

Figura 13: Representação das curvas de trajetória para o movimento de um projétil submetido a 
um ambiente sem arrasto e com arrasto para baixa velocidade e alta velocidade. As curvas foram 
construídas usando velocidade inicial �� = ���/�, ângulo inicial �� = ��°. Nos casos com 
arrasto foi adotado � = �,�� ��� para baixas velocidades e � = �,�� ��� em altas velocidades.  

 

 

4. Conclusão 

 Neste trabalho apresentamos os dois tipos possíveis de movimento 

oblíquo em projéteis com o efeito da força de arrasto, separado para baixas e 

altas velocidades. Assim realizamos a modelagem analítica e numérica para 

cada caso, desenvolvendo de maneira explicativa as equações para que o 

estudo dos movimentos sejam de sejam de fácil reprodução pelo leitor.  
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 No movimento de baixas velocidades, foram determinadas as 

expressões que definem a constante de arrasto e a velocidade inicial do foguete, 

contando como variáveis o tempo, o alcance, e o ângulo de lançamento. As 

expressões analíticas para � e �� valem contanto que � ≪ 1. Com isso, fica 

possível a investigação experimental do valor de � por um aluno de iniciação 

científica com uso de foguetes artesanais feitos de garrafa PET (CUZINATTO, 

et. al., em preparação). Esse é um trabalho em andamento na instituição dos 

autores deste trabalho, no contexto do PET-Ciência, pela equipe dos Rocketeers 

UNIFAL-MG (CUZINATTO, et al., 2015). 

 Uma outra aplicação possível para os resultados deste artigo é o estudo 

do movimento de foguetes à propelente químico, já que estes desenvolvem altas 

velocidades. Mesmo sendo uma situação mais complexa de se desenvolver 

experimentalmente, é muito importante em áreas como a aerodinâmica, sendo, 

portanto, um bom assunto de estudo para alunos de engenharia aeroespacial. 

Na verdade, já existe, na instituição dos autores deste trabalho, uma equipe 

fazendo experimentos com foguetes propelidos por um composto de hidróxido 

de alumínio (PIZZO, et. al., 2015). O presente artigo estabelece firmemente as 

base teóricas para o estudo do movimento dos foguetes produzidos por essa 

equipe. 
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