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Resumo Este trabalho apresenta os fundamentos teéricos para a descrigdo do
movimento balistico sob influéncia do arrasto desenvolvido por dois tipos de
foguetes artesanais: os impulsionados por agua pressurizada e os propelidos
pelos gases liberados na queima de combustivel sdélido. Os primeiros
desenvolvem velocidades baixas (v 10 m/s) e, por isso, sofrem agdo de uma
forga de arrasto linear com v. Os segundo adquirem velocidades iniciais altas o
suficiente para requerer a modelagem da forgca de arrasto como quadratica na
velocidade. Resolvemos em detalhes as equacdes de Newton nos dois casos,
construindo as fungbes horarias das posicbes e as equagdes de trajetoria.
Obtemos as fungdes da velocidade inicial do projétil e do coeficiente de arrasto
para baixas velocidades em fungdo do tempo de voo do foguete e de seu
alcance. Mostramos que o alcance dos foguetes € menor na presenga do arrasto
do que na auséncia dele.

Palavras-chave: movimento balistico, coeficiente de arrasto, alcance para altas

e baixas velocidades.

Abstract This work lays down the theoretical foundations for the description of
ballistic motion under the drag force of two types of handmade rockets: the ones
propelled by pressurized water and those set into motion by solid propellant
rocket boosters. Water rockets develop low velocities (v 10 m/s ) and are thus
subjected to a drag force linear in v. Solid rocket boosters have velocities high
enough to require the modelling with a drag force quadratic in v. We apply
Newton laws of motion and build the equations for horizontal and vertical
displacements as functions of time. We calculate the equations for trajectories on
both cases. The initial velocity of the rocket and the drag coefficient for low
velocities are given in terms of the range and time of flight. It is shown that the
range is smaller in the presence of drag.

Keywords: ballistic motion, drag coefficient, range for low and high velocities.

Revista Brasileira de Iniciagdo Cientifica, Itapetininga, v. 4, n. 2, 2017.



o
1. Introdugéao

As disciplinas de mecanica basica nos cursos de engenharia, fisica e
matematica geralmente abordam o langamento obliquo de um corpo sem
considerar a resisténcia do ar. Isso provoca um distanciamento com o caso real,
onde a presenga do ar influéncia na trajetoria.

Existe uma maneira experimental relativamente simples de estudar a
trajetdria balistica de projéteis: construir foguetes artesanais propelidos a agua
(CUZINATTO et. al.,, 2015) ou a combustivel quimico (P1ZZO, et. al., 2015).
Esses foguetes terdo seus movimentos descritos pelas leis de Newton e seus
alcances afetados pela presenga a forga de arrasto. O objetivo central desse
trabalho é descrever matematicamente como essa forga de arrasto age sobre os
projéteis, modificando a curva parabdlica do movimento obliquo na auséncia do
atrito com o fluido ambiente (HALLIDAY et. al, 2008).

A forca de arrasto aparece na mesma diregcao do movimento, porém em
sentido oposto a ele, levanto ao retardo do movimento corpo. A forca de arrasto

€ representada genericamente pela equacéo:

|E.| = av + bv?, (1)

sendo a e b constantes que dependem das propriedades do corpo e do fluido e
v a velocidade do corpo. Em velocidades baixas, menores que aproximadamente
24m/s (MARION e THORNTON, 2004), a equagao genérica do arrasto (1) reduz-
se a parte linear; i.e. desconsidera-se o termo quadratico na velocidade. Esse
termo quadratico torna-se importante a velocidades maiores, entre 24m/s e cerca
de 300m/s (velocidade do som), caso em que tomamos apenas o segundo termo
do lado direito de (1).

Neste trabalho, teremos como objetivo estudar o langamento obliquo de
foguetes de forma a encontrar a equagao que define a constante de arrasto k
considerando duas situagdes: a primeira é aquela em que o projétil desenvolve
baixas velocidades (v/v « 1), quando vale |E.| = av; a segunda é o caso em

que |E.| = bv? que vale para v/v > 1.
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2. Estudo fisico do Movimento Obliquo dos Projéteis com baixas
velocidades

O desenvolvimento dessa secao é baseado na Secdo 2.7 da Ref.

(MARION e THORNTON, 2004). Percorreremos este caminho para fixar a

notacdo e preparar o leitor para a contribuicdo nova deste trabalho que é a

equagao para a constante de arrasto k em fung¢ao do alcance do projétil e do seu

tempo de voo.

2.1. As fungoes horarias das velocidades e das posi¢coes

Um projétil que é langado em ambiente aberto a um angulo inicial 8, com
a horizontal, esta submetido a um movimento denominado obliquo. Neste caso,
serao gerados dois tipos de movimento simultaneos: o vertical (subida e descida)
e o horizontal (corpo segue em sentido de x para frente, conforme a Figura 1). O

projétil sai com uma velocidade inicial de modulo v, e esta sujeito a forca

gravitacional P, na vertical para baixo, e a forca de arrasto F. nadirecdode v/v.

1!

o
=
1]
=

Figura 1: Vetores relevantes para o estudo do movimento obliquo de um projétil.

Como o movimento obliquo tem componentes nas direcdes horizontal e
vertical, surge a necessidade de decompormos o estudo do movimento em dois
eixos x e y.

Analisaremos primeiramente a componente do movimento ao longo do

eixo x. Nesta direcao, a unica forca atuante no sistema é a componente x da
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forca de arrasto, dada por F., = kmuv,, em que k representa a constante de

arrasto, m a massa e v, € a componente da velocidade no eixo x. A segunda

Lei de Newton,

(2)
3)

F =ma,

a, = kv,

dv N , .
com a, = d—tx, na dire¢do do eixo x da:

d
S _ kfdt

Ux
lw, = kt+ C;. 4)

A constante de integracdo C; € encontrada a partir da condi¢do inicial

v (t = 0) = vy, = vycosb,. Isto significa que o projétil estd em repouso na

origem no instante inicial. De fato,

lmox: k 0+ Cl
(5)

Cl = l nvox.
Substituindo (5) em (4), encontramos:

lw, = kt+1 1w,
v

In—== kt
Vox

vx
ekt —
Vox

Uy = Vox ekt , (6)

que € a equagao da velocidade do projétil. Como v, = dx/dt,
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fdx = vaxe_ktdt

Vox —
X = %e k4 C, . (7)
Impondo, na equacgao (7), a condigao inicial de que o projétil estd na origem do
sistema de eixos no instante inicial, x(t = 0) = 0, determinamos a constante de

integracao C, = v,,/k. Com isso,

0 =200 ok, ®)

k
que é entdo a equagdo que descreve o movimento horizontal de um projétil
submetido a forca de arrasto.

Analisaremos agora a componente do movimento no eixo vertical y
(Figura 1). Existem duas forgas que atuam nesta direcao, a componente vertical
da forga de arrasto F., = kmv, e a forga peso P = mg sendo g a magnitude
da aceleragéo gravitacional.! O sinal negativo em F,,, aparece porque o arrasto
€ sempre oposto a dire¢do do movimento, dire¢éo esta determinada por v,.. Note
como isso é consistente: quanto o movimento do projétil na direcédo y € para
cima, a velocidade & positiva e o sinal negativo de F,.,, indica que a forga € para
baixo; por outro lado, quando o movimento do projétil na diregao y é para baixo,
a velocidade é negativa (variagdes negativas da posi¢gdo no tempo), o sinal
negativo na equagao de F., cancela o sinal negativo de v,, levando a um sinal
positivo global, o qual indica que a forga € para cima (contraria ao movimento
descendente, portanto). O sinal € negativo em P, pois a forga peso € sempre

vertical e para baixo. Dito isso, a 22 Lei de Newton aplicada a diregao y da:

E, =F,+P=ma, .

ay = kvy g. (9)

' Note que a constante de arrasto k € tomada como a mesma em ambas as
diregbes do movimento, i.e. k = k, = k,,. Isso € coerente contanto que o movimento
aconteca em um meio homogéneo, o que é perfeitamente razoavel para o ar nas
imediagbes da superficie.
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dv
Como a, = —Z, temos:
dt

fvy oy _ ftdt (10)
1]Oykvj’,+g o

onde adotamos a condig&o inicial v, (t = 0) = vy, = v, si M, € usamos vy, no
argumento da integral do lado direito de (10) apenas para evitar confusdo com o
limite superior de integragéo v, = v, (t). Resolvendo a integral (10) pelo método

da substituicao de variaveis,? obtemos

g kvoy‘l'g —kt 11
y = k+—k e . (11)

Vamos encontrar a fungéo y(t) do deslocamento vertical, empregando

v, = % na equacgao. (11). Fixamos o sistema de eixos na origem da trajetéria do

projétil, de modo que a altura inicial do movimento é nula: y(t = 0) =y, = 0.

Temos:

’ t kvgy+ t !
fyyody =fo( %)dt+—"°lf gfoe kt' q¢

(kvosi 190+g)
y:

A ey & (12)

k

que é equacao que descreve o movimento na vertical.

Temos agora as duas equacgdes para as fungdes horarias do projétil.
Podemos encontrar uma equagao que descreva a curva no espacgo descrita pelo
projétil; trata-se da equacdo da trajetéria y = y(x). Essa fungdo € obtida

isolando o tempo da equacao do deslocamento horizontal (8),

2 Sugerimos a troca de variaveis: u = kv, + g.
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t:Eln—kx (13)
Vg c0sH,

e substituindo na funcéo horaria das posicoes na vertical (12). O resultado é:

= (tardy + —=—)x+Z1nf1 kx] 14
y=\rato kv, cosf, x " Vo c0sfyl (14)

Esta equagéao fornece as curvas da Figura 2 para diferentes valores de k. Elas
representam a trajetéria do projétil sujeito a forga de arrasto linear no moédulo da

velocidade.

il
0

X

Figura 2: Construgao das trajetérias de um projétil sob agao da forga de arrasto linear em v para
diferentes valores do par&dmetro de arrasto k. [Curvas analogas as que aparecem na Fig. 2.8 da
Ref. (MARION e THORNTON, 2004)] Para a construgdo das curvas nesta figura, usamos as
condigdes iniciais 8, = 45°, v, = 10 m/s, x, = ¥, = 0 bem como g = 9,81 m/s?%. Enfatizamos que

o indice 0 indica que as quantidades sao calculadas em t, = 0.

Observando a Figura 2 concluimos que a trajetéria do movimento para
k = 0 é uma parabola. Isso é confirmado pela equacdo da trajetéria do

movimento obliquo sem arrasto (HALLIDAY, et. al, 2008),

9 2
2v2cos?6

y =tanfyx (sem arrasto) (15)
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Nao fizemos a dedugao dessa equagao aqui, mas ela pode ser obtida de (14) no

caso limite em que o arrasto € muito pequeno, i.e. k << 1. De fato, nessa

kx

circunstancia, 1 = pode ser considerado pequeno, de modo que podemos

vy cosby

usar a aproximagao

AZ
1{1+1) =21 ?+0(A3) A « 1, (16)

na equacdo (14). Entdo, cancelamento de termos lineares em k=1 leva a
equacao. (15).

As equacgbes. (3), (6), (8), (9), (11), (12) e (14) caracterizam
completamente o movimento obliquo com arrasto no regime de baixas
velocidades do projétil. Convém comparar essas equagdes com o caso do
movimento obliquo sem arrasto. Para conveniéncia do leitor, isso & feito na
Tabela 1.

Tabela 1: Equagbes para o movimento bidimensional com e sem a arrasto.

Movimento Obliquo com k = 0 Movimento Obliquocom k # 0,v << 1
Eixo x Eixo y Eixo x Eixo y
Aceleragéo a, =0 a, =0 ay = kv, a, = kv, g
i kv, +
Velocidade Uy = Vpy vy =Vp, gt Uy = Vg, e Kt vy = %+ OyTge_kt
0 .
Deslocamento X = Xg + Vgyt Y = Yo+ voyt %gtz x = w(l + e7kt) y= (k"o“k++9) 1 e %
Equagio da = tarfux g x2 _ ( 9 ) g [ kx ]
P = =(tafy +——F— —lnf1
Trajetoria y 0 2vicos, y artly + kv, cosfy Xt vy cosBy
Tipo de curva Parabdlica Figura 2

Apesar da descrigao fisico-matematica do movimento estar completa, é

interessante obter uma equacao para o alcance R’ do projétil em fungéo do tempo
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T' de voo, pois essas quantidades sado facilmente acessiveis

experimentalmente.

2.2. O alcance R’ do projétil em fungao do tempo de voo T'.

O alcance de um projétii em movimento obliquo € medido como a
distancia horizontal x =x x, entre o ponto de partida e o ponto de impacto.
Nessa definigdo de alcance, a altura y, do ponto de partida de coordenada
horizontal x, deve ser a mesma altura y do ponto de impacto de coordenada
horizontal x = R. Se o sistema de eixos € fixado no ponto de partida: x, = y, =
0. Usando essas informagdes nas equagdes da Tabela 1 para o movimento sem

arrasto k = 0, temos:

R = vycos6,T

1
0=vysi®, T ngZ (17)
que leva a equacéao para o alcance em fungao da velocidade inicial
vh
R(vo) = ?si 126,) (k=0), (18)
e conduz a expressao do alcance em funcao do tempo de voo:
R(T) =L (k = 0). (19)

2tanf,

O alcance no caso do movimento com arrasto (k # 0) serda denominado
de R’ para evitar confusdo com as quantidades das duas equacdes acima. Da
mesma forma, chamaremos de T’ o tempo de voo no caso do movimento obliquo
com arrasto. A primeira ideia que poderiamos ter para escrever R’(v,) seriaisolar

t =T’ na equacgao (12), com y = 0,
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_ (kvgsity + g)

TI
kg

(1 ¥, (20)

para, depois, substituir na equacao (8) de x = R’. Porém a equacao (20) é
transcendental em T’ Sé seremos capazes de encontrar a expressao para R’(v,)
ao resolvermos (20) para T’ aproximadamente.

O que segue é chamado de método perturbativo,3 e requer que o arrasto
seja pequeno, i.e. k << 1. Nessa circunstancia, o argumento da exponencial em
(12) é também pequeno; consequentemente essa fungcdo pode ser expandida
em sua série de Taylor (STEWART, 2010) de acordo com:

2 x3

x Ooxn X 4
e =Zm=l+x+§+§+0(x )- (21)

n=0

~ — ! ;
Fazendo a expanséo de e *T" de acordo com (21), mantendo termos até a ordem

( kT")3 e substituindo o resultado em (20), temos:

!

_ 2vysit, 1 lkT’Z 2
B kvgsi 19, +§ : (22)

g

9 1+

Agora, podemos observar que a expressao entre parénteses na equagao
(22) tem a forma (1 + x) 1. Essa forma possibilita a simplificagcdo de (22) através

da expansdo em série de Taylor:*

A+x)t=1 x+x* x3+ , (23)

kvg si 9y

desde que x « 1 onde, para nos, x = é funcao de k. Isso implica a

condicao:

3 Um outro método possivel obter T' da equagao (12) é o método numérico.
Porém, preferimos adotar a abordagem analitica neste texto tanto quanto possivel.

4 Conforme apéndice D.8 da Ref. (MARION e THORNTON, 2004).
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g
vosing’

k <

(24)

Substituindo a forma (23) em sua equacéao de origem (22) e mantendo a

expansao até o termo quadratico, chegaremos a:

k? (25)

)

T'> 2vZsiAg 2v,si®  2vising
T =(— 2 ke 42208
3 g g g

O ultimo termo de (25) vai com k? e, como k « 1, é desprezivel frente aos

demais termos. Por isso, escrevemos:

7' 2v¢sifie 2vgsi 10
T = — k + (26)
3 g? g
Ao tomarmos k = 0 em (26), obtemos:
2v si 19,
T’ = T =T ) (27)

que é a equacao do tempo final de voo de um projétil no movimento sem atrito
(MARION e THORNTON, 2004). Assim, podemos confirmar que as
aproximacoes feitas estdo validas. Outra consequéncia desse fato € que T € uma
primeira aproximagao para o tempo de voo T' do movimento com arrasto. Esse
fato pode ser usado no lado direito da equagao (26): substituindo T' =T no

parénteses de (26) leva a:®

v si 1,
k), (28)

39

S Equagéao (26) € uma equacao do segundo grau em T’'. Uma alternativa a essa
técnica de fazer T' =T no lado direito de (26) é resolver diretamente a equagao do
segundo grau e manter apenas termos lineares em k. Isso leva ao mesmo resultado
que (28).
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que é expressao aproximada do tempo de voo para pequenos valores de k.
O alcance R’ do movimento obliquo com arrasto € o valor de x quando o
tempo de voo é t =T’ na equagao (8). Usando a equagédo (21) em (8) com

termos de até segunda ordem na expansao encontramos:

R’—R(l v Sm"k) 29
onde,

5
R = ?si 126,), (30)

€ a equagao para o alcance do movimento obliquo sem arrasto (k = 0).

A equacao (29) mostra que o alcance de uma trajetéria com arrasto é
menor do que a mesma sem arrasto (MARION e THORNTON, 2004): vide sinal
negativo no parénteses e também a Figura 2.

As equacbes (28) e (29) para T' e R' caracterizam completamente o
movimento com arrasto para k < 1. Porém, ambos T' e R’ dependem da
velocidade inicial do projétil v,. Essa quantidade ndo é acessivel facilmente do
ponto de vista experimental. Geralmente, medimos facilmente T’, R’ e 6,, mas
nao v,. Por isso, as equacgdes (28) e (29) ndo sdao as mais adequadas para
calcularmos o coeficiente de arrasto k. Para esse fim é mais conveniente
encontrar uma expressao do tipo k =k(T',R',6,). A determinagdo dessa
equagao para k passa pelo calculo da expressao de v, emtermosde T', R’ € 6,.
E o que fazemos a seguir.

Sabemos que as equagdes (28) e (29) possuem como condigdo de
validade o vinculo (24), iremos encontrar uma forma de determinar o valor de k
e v, considerando esta restricdo. Para isso, vamos isolar o termo k da equagao
(28) para substitui-lo em (29). Entao, teremos uma expressao do segundo grau

variavel em v,, na forma:
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3
7 (2sinBycoBy)vé  (4cosBy T vy +R = 0. (31)
Pela férmula de Bhaskara teremos duas raizes reais para (31):

g7 + I 3R’ tamf, 32
TN 29T% | 2

Para decidir qual sinal € mais adequado nos colchetes da equacao (32), é
necessario estudar a consisténcia dessa equacdo com o caso sem arrasto.
De fato, para k=0, T'=T e R’ =R, c.f. equagado (29) e (30). Nesse

caso, (32) fica:

__4T (1+1> 33
Vo= 35, \" T 2) (33)

Apenas a escolha do sinal positivo em (33) pode levar a expressdo de T

consistente com a equacao (27). Por isso, o sinal negativo deve ser desprezado.

Logo, em vez de (32), vale:

T' 3R'targ 34
vo==2 |14 |1 =200 (34)
3si 19, 29gT'?

Substituindo (34) em (28) e isolando k, encontramos:

k=9 <1 9—7”), (35)

T v si1, 2v si 19,

que sdo as equacgdes que precisamos para obter a velocidade inicial e o
coeficiente de arrasto no movimento obliquo do projétil como fungdode T', R' e
0,. Enfatizamos que as aproximagdes (34) e (35) valem para k < 1, 0o que
equivale a dizer que a condigao (24) deve ser satisfeita. As equacgdes (34) e (35)

sao muito Uteis do ponto de vista experimental: em um trabalho futuro,
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pretendemos medir T’, R’ e 8, em langamentos de foguetes de garrafas PET
propelidos a agua (usando cronémetro, fita métrica e transferidor) para, entao,

determinar o valor do coeficiente k.

3. Estudo fisico do Movimento Obliquo dos Projéteis com altas

velocidades

Nesta etapa do estudo, vamos detalhar as equacdes para o movimento
obliquo com arrasto valido para velocidades entre 24m/s e 300m/s (MARION
e THORNTON, 2004), que levam a E. « v2. Um trabalho mais recente abordando
este tema foi realizado por Chudinov (2013), que tomamos como referéncia
assim como outros artigos salientados no decorrer do estudo.

Um projétil é langado sob um determinado &ngulo 8, com a horizontal
em um ambiente aberto. Considerando apenas as forgcas de arrasto e peso,
vamos estudar este movimento de modo a encontrar a equagao da velocidade e

da posigéo ao longo de toda a trajetéria.

//)9 -~

Figura 3: Representagao esquematica da trajetoria de uma projétil com movimento bidimensional

e forga de arrasto proporcional ao quadrado da velocidade. P é a forga gravitacional; F,., a forga
de arrasto e v, a velocidade do projétil.

Na Figura 3 podemos observar que apenas a forga peso esta dirigida ao

eixo y e a forga de arrasto E. juntamente com a velocidade v vai apresentando

angulos diferentes com a horizontal (eixo x) conforme caminha pela trajetoria
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balistica, logo, temos 6 = 6(t). Em vez de realizar um estudo da decomposicao

dos vetores na vertical e horizontal, vamos tragar novas coordenadas para o

sistema, c.f. figura 4, sendo que o versor ¥ se orienta no sentido da velocidade

do projétil e o versor p é perpendicular a ¥, ou seja, forma um angulo de 90° com

D.

Figura 4: Representagéo dos eixos fixados no projétil.

Como o projétil possui altas velocidades, a equagao geral (1) para o

modulo da forga de arrasto pode ser aproximada pelo segundo termo:

E =cmw?, (36)

onde ¢ tem unidades de inverso de comprimento (m~! no S.l.). Vamos iniciar os

~

estudos pelo eixo da velocidade ¥. Na Figura 4, observamos duas forgas

envolvidas na resultante |E,| = m|a,|: a componente da for¢ca peso ao logo do

eixo de v: P,, e a forca de arrasto F.; logo:

F. P, =ma,

— 37
mcv® Pcosé mdt' (37)
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sendo ¢ o angulo compreendido entre o eixo de ¥ e a forga peso, como indicado

na Figura 5. Note que ¢ pode ser entendido como:

£=90 6, (38)

em que 6 é o angulo da trajetéria em relacéo a horizontal.

Figura 5: Representacgao das forgas, suas componentes e dos angulos 0 e §.

Assim, substituindo (37) em (36) e realizando algumas simplificacbes com

equacodes trigonométricas (cosseno da soma de dois arcos), chegamos a:

d .
d—:— gsi® cv?. (39)

Voltamo-nos agora ao eixo de 8. A Unica forca nesta direcdo é a

componente @ da forca da gravidade, assim:

Psiné=may, (40)
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sendo ag a aceleragcdo que possui direcdo perpendicular a velocidade.
Substituindo a equacgao. (38) em (40), usando P = mg e empregando a regra do

seno da soma de dois angulos, podemos chegar a:

gcosf=ag. (41)
S >
v g
m m

T -

r v

6 0

Movimento Circular Movimento do projétil

Figura 6: Representacao da analogia do movimento circular uniforme de uma particula de massa
m (esquerda) com o movimento obliquo de um projétii de massa m (direita). A analogia

estabelece o método do hododgrafo: a equacgéao (43) decorre de (42).

No movimento circular uniforme (MCU), a velocidade v tangencial a

trajetoria circular da particula de massa m depende do médulo da velocidade

ae . o
angular w = - € do raio r da trajetdria conforme

v=awr. (42)

No caso do MCU, o vetor radial r € posicionado na origem dos eixos x e y, e 6
, A . . ~ . . d
€ 0 angulo entre o eixo x e a diregéo radial r. Ademais, vale v = d—:.

Para o nosso movimento obliquo, é o vetor velocidade v que faz um

A . . . d .
angulo 6 com o eixo x. Além disso, vale ag = d—:. Por analogia a (42) deve valer:

ag = wv (43)
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. ’ do , 4 . ] )
onde, aqui também, w = e (o &ngulo do movimento obliquo € o mesmo do caso

do MCU). A técnica que permite obter (43) a partir de (42) é chamada de método
do hoddgrafo (NUSSENZVEIG, 2004).
Substituindo (43) em (41), temos:

a6 gcost
dt v

: (44)

As equacdes (39) e (44) formam um sistema de equacdes diferenciais

de segunda ordem com coeficientes ndo constantes:

dv_ gsi cv?
dg _ gcosd
dt v

Se formos capazes de resolver este sistema, encontraremos as fungoes
v(t) e 6(t). Com elas, é possivel determinar as fungdes horarias das posi¢coes

horizontal x(t) e vertical y(t). Isso é verdade pois, por um lado,

dx

—_ = 46
7= Vo (46)

e, por outro lado, v, é a projecao do vetor v ao longo do eixo x com o qual v faz

o angulo 6 (Figura 7):

vy =vcosh (47)
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Figura 7: Decomposigéo da velocidade com a horizontal e vertical de acordo com o &ngulo.

Logo,

dx

— = 48
I v(t) cosf(t), (48)
cuja integracgao leva a funcao x(t) desejada.

d . .
Analogamente, =2 = v, = vsi 19, i.e.
dt y

d
d_}t] =v(t)si(t), (49)
que, quando integrada, leva a y(t).

Passamos a tarefa de integrar o sistema (45) para obter v(t) e 6(t),
percebendo que é possivel escrever v = v(@(t)), ou seja, vale a regra da

derivagao implicita

dv _ dv df

dt _ dé dt ’ (50)

substituindo (39) do lado esquerdo de (50) e inserindo (44) do lado direito de
(50), temos:

Revista Brasileira de Iniciagdo Cientifica, Itapetininga, v. 4, n. 2, 2017.



LY o+
vdg — "t gcoso’

(51)

para integrar essa equacao diferencial de v(8) é conveniente reescrevé-la como
(TIMOSHENKO e YOUNG, 1948):

cvd

dv d
ik - = 52
d6c059+vd6(c059) 7 (92)

onde reconhecemos a regra da derivagao do produto (FLEMMING, 2006). Logo,
gdwcosd) = cv3do. (53)

Dividindo (53) por , v temos:

d(vcosf) _ ¢ db (54)

(vcos)3 Ecos39 !

que pode ser integrada membro a membro. Usaremos a condigao inicial v(8,) =

vo. Do lado esquerdo de (54) aparece a integral:

vcosé

1(vc059)=f”°se dw _ w3 = l( ! > L ), (55)

v cosfy w3 (-3+1) w=v, c0S0, 2\v2cos?6 v§cos? b,

onde usamos a definicdo w = vcosf. O lado direito de (54) € resolvido pela

técnica de integracéo por partes:

6 0 6
do
= —_— = 0
1(6) —9 Y Jsec”@ df =sedtam|g éf(sec”@ secd)dd  (56)
0 0 0

Aintegralde sed 8 aparece dos dois lados de (56) com sinais opostos. Isolando-

a do lado esquerdo e dividindo a equacao resultante por dois:
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1 & 4 o
() =-seddtad| +-In(sed+tam)| , (57)
2 90 2 90
onde usamos,
0
feosec9d9=ln(sec9+tan9)|go. (58)

Este ultimo resultado pode ser obtido mediante a mudanca de variaveis

u=sed +tard. A equacéo (57) pode ser facilmente rescrita como:

I(g)_l(sirﬂ+1 1+si19) l(si190+11 1+si190) 59
" 2\cogf 2 1 siW) 2\co£6, 2 1 sim,/’ (59)
Substituindo (55) e (59) em (54), obtemos finalmente v(6):
2
R e T S N 1+:Oine si® 1, 1+si
- Y| (Sl W, |, 2 0 =
co¢ 8, g[(c05290+21n1 silﬂo) (c0529+211 silﬂ)] (60)
ou seja,
cos 0
U(0)=U0{m
cvd si®, 1, 1+si,
+7C0§0[<c0§90+51 1 sirﬁo> (61)

si169+11 1+sim\]) ">
cogfh 21 siw

Substituindo (61) em (44) encontramos a equagao diferencial para 6(t),

Sk

Vo c05200+7 co2fy 2 1 sim, cogf 2 1 sid

—— . . .
_ gco§6\] 1 Cv0[<51190+1lrl+51190> <5119+11n1+5119>]’ )

cuja solugao nao pode ser encontrada analiticamente. Dessa forma, por meio do

software Wolfram Mathematica, recorremos ao método numérico e encontramos
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a solugao da equacgao 9(t) dada pela Figura 8. Tomamos g=981m/s? e

consideramos como condig¢des iniciais t(0) =ty = 0, v(ty) = vy = 10m/s, 6, =

Figura 8: Curva da fungéo 0(t) para o movimento obliquo com arrasto quadratico na velocidade.

Da Figura 8, vemos que 8 decresce com o tempo para um langcamento
obliquo para cima. Isto € esperado: o angulo do vetor velocidade com a
horizontal varia ao longo da trajetéria obliqua para manter v sempre tangente a
curva descrita pelo corpo. Pela condigédo inicial imposta, o projétil inicia seu
movimento com 45° (/4 = 0.79) em relac&o a horizontal e tende a diminuir este
valor até 0°, onde o foguete atinge sua altura maxima e a componente y da
velocidade se anula (o projétil para de subir), para t 0,7s. A partir desse
instante, o projétil inicia seu movimento de queda, o vetor velocidade aponta na
diagonal para baixo, e o &ngulo tera valores negativos (pois € contado no sentido
anti-horarioa partir da horizontal).

O proximo passo € inserir a solugdo numérica de 6(t) na equagao

diferencial (39) para v(t),

gsi). (63)

Esta equacéo ¢ ordinaria (com derivada total, ndo parcial), n&o linear (v?) e ndo

homogénia ( gsi ¥ ). Por ndo ser possivel encontrarmos sua solu¢ao analitica,
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novamente recorremos ao software Wolfran Mathematica 10.4, que nos da a

curva de v(t) apresentada na Figura 9.

|

=]
(=N ¢
[=
[=

Figura 9: Curva de v(t) para o movimento obliquo com forga de arrasto quadratica na velocidade.

Na Figura 9 observamos que o foguete inicia seu movimento a uma
velocidade 10 m/s, em acordo com a condi¢do inicial adotada: v, = 10 m/s. Note
gque a magnitude da velocidade decresce até o instante t 0,7s. Isso é
compreensivel: até esse instante o projétil esta na parte ascendente da trajetéria
e a componente vertical da velocidade v, diminui,® levando ao decréscimo de
v = /v, +v,. A componente v, torna-se zero na altura méxima, onde 6 =0 e
quando t 0,7 s. A partir dai, o projétil comega a cair, descrevendo a trajetoria
descendente, na qual v, aumenta sob agéo da gravidade, levando ao aumento

de magnitude de v .

Substituirmos, agora, o resultado para v(t) da Figura 9 na equacgao (48),

dx = v(t) coso(t) dt, (64)

6 Nao é apenas v, que decresce ao longo da curva ascendente. A componente v, também
diminui devido a desaceleracao impressa pela forga de arrasto.
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e integramos numericamente para obter a funcdo x(t) exibida na Figura 10.

Usamos x(t,) = x, = 0 como condi¢ao inicial do processo de integragao.

x(f)

o

0.0 02 04 0.6 08 1.0 12 14

Figura 10: Curva do deslocamento horizontal x(t) do projétil no movimento obliquo sob a forga
de arrasto quadratica na velocidade (curva azul) e do movimento obliquo sem qualquer forca

de arrasto (curva laranja).

E observado na Figura 10 que o valor de x aumenta sempre, o que é
esperado para o movimento obliquo progressivo executado pelo projétil. Para
efeito de comparacgao, a Figura 10 também mostra o grafico da fungao x(t) para
o movimento obliquo sem arrasto, que deve ser uma reta (pois, nesse caso, x =
Xo + Vet). Veja que o valor de x do caso com arrasto € sempre menor (t maior
que cerca de 0,5 s) ou igual (t menor que aproximadamente 0,5 s) ao valor de x
para o caso sem arrasto: o alcance do projétii € menor quando uma forga
resistiva age sobre ele.

O mesmo procedimento é realizado para obter y(t), ou seja, vamos
substituir v(t) e 8(t) — Figuras 8 e 9 — em (49),

dy = v(t) si0(t) dt (65)

e integramos numericamente os membros, resultando na curva de y(t) da Figura
11.
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Figura 11: Valores resultantes do método numérico da Equagao (65).
A Figura 11 mostra que a altura maxima atingida pelo projétil no caso com

arrasto € menor do aquela alcangada no movimento obliquo sem arrasto. De

fato, os picos das curvas tem posi¢des verticais distintas.

Por ultimo, usamos as fungdes representadas nos graficos das Figuras

10 e 11 para construir os graficos de trajetérias, x versus y, Figura 12.

— — —— .
15k -
=& — Com Arrasto

: : Sem Arrasto
201 1
1L3F

& Ve

h“ f
10} /

/
05k
0.0 L

Figura 12: Curvas da trajetéria de um projétil para altas velocidades considerando arrasto.

Fazendo uma comparagéo entre as curvas com arrasto e sem arrasto,
Figura 12, vemos que a curva sem arrasto € identificada como uma parabola,

conforme a Tabela 1. Ademais, a curva com arrasto € uma “parabola deformada”,
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assimeétrica em x e mais achatada em y, visualizada abaixo da parabola. Isso &
valido pois o valor de x € menor para movimento com arrasto e o valor de y
também (Figuras 9 e 10), uma vez que a forga de arrasto influencia no (sentido
contrario do) movimento tanto na componente vertical quanto na horizontal.

As trajetodrias da Figura 12 (do movimento sem arrasto e do movimento
com arrasto sob altas velocidades), podem ser comparadas com as curvas da
Figura 2, apresentadas na Se¢ao 2.1, para o movimento com arrasto em baixas
velocidades. A Figura 13 executa essa comparagao. As condi¢des iniciais para
vy =10m/s e angulo 6, = 45° sdo as mesmas para todos os tipos de
movimento; a constante de arrasto linear em v é tomada como k = 0.04s7!; a

constante de arrasto quadratico em v é escolhida como ¢ = 0.01 m™1.

T c#0, vl

X

Figura 13: Representacéo das curvas de trajetéria para o movimento de um projétil submetido a
um ambiente sem arrasto e com arrasto para baixa velocidade e alta velocidade. As curvas foram
construidas usando velocidade inicial vy = 10m/s, angulo inicial 8, = 45°.Nos casos com
arrasto foi adotado k = 0,04 s~* para baixas velocidades e ¢ = 0,01 m~! em altas velocidades.

4. Conclusao
Neste trabalho apresentamos os dois tipos possiveis de movimento
obliquo em projéteis com o efeito da for¢ca de arrasto, separado para baixas e
altas velocidades. Assim realizamos a modelagem analitica e numérica para
cada caso, desenvolvendo de maneira explicativa as equagbes para que o

estudo dos movimentos sejam de sejam de facil reproducgao pelo leitor.
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No movimento de baixas velocidades, foram determinadas as
expressoes que definem a constante de arrasto e a velocidade inicial do foguete,
contando como variaveis o tempo, o alcance, e o angulo de langamento. As
expressoes analiticas para k e v, valem contanto que k «< 1. Com isso, fica
possivel a investigacdo experimental do valor de k por um aluno de iniciacéo
cientifica com uso de foguetes artesanais feitos de garrafa PET (CUZINATTO,
et. al., em preparagao). Esse é um trabalho em andamento na instituicdo dos
autores deste trabalho, no contexto do PET-Ciéncia, pela equipe dos Rocketeers
UNIFAL-MG (CUZINATTO, et al., 2015).

Uma outra aplicagéo possivel para os resultados deste artigo € o estudo
do movimento de foguetes a propelente quimico, ja que estes desenvolvem altas
velocidades. Mesmo sendo uma situacdo mais complexa de se desenvolver
experimentalmente, € muito importante em areas como a aerodinamica, sendo,
portanto, um bom assunto de estudo para alunos de engenharia aeroespacial.
Na verdade, ja existe, na instituicdo dos autores deste trabalho, uma equipe
fazendo experimentos com foguetes propelidos por um composto de hidroxido
de aluminio (P1ZZO, et. al., 2015). O presente artigo estabelece firmemente as
base tedricas para o estudo do movimento dos foguetes produzidos por essa

equipe.
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