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Resumo: Na analise estrutural, o Método dos Elementos Finitos (MEF) ¢ uma solugdo frente aos limitados
métodos analiticos. Com base em fundamentos da Algebra Linear e da Resisténcia dos Materiais, equacionou-se
o MEF para vigas e aplicou-o na resolucdo de dois problemas. Contrastando os resultados obtidos pelos métodos,
confirmou-se a eficiéncia do MEF na analise de qualquer estrutura e verificou-se que um software matematico
dotado do método seria uma valiosa ferramenta de anteprojeto.
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Abstract: In the structural analysis, the Finite Element Method (MEF) is an alternative to analytical methods.
Based on the Theories of Linear Algebra and Resistance of Materials, the MEF was initially formulated for beams
and nowadays it is largely used in the engineering. By comparing the results obtained by both methods, the
efficiency of the MEF for some structures is verified. We also implement the MEF in a mathematical software
supplying an auxiliary tool for engineering drafts.

Keywords: Linear algebra. Finite elements. Structural analysis.

Resumen: En el analisis estructural, el Método de los Elementos Finitos (MEF) es una solucion frente a los
limitados métodos analiticos. Con base en fundamentos del Algebra Lineal y de la Resistencia de los Materiales,
se ecuaciono el MEF para vigas y lo aplicé en la resolucion de dos problemas. En contraste con los resultados
obtenidos por los métodos, se confirmo¢ la eficiencia del MEF en el analisis de cualquier estructura y se verifico
que un software matematico dotado del método seria una valiosa herramienta de anteproyecto.
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Introducio

Nos paises em desenvolvimento, como o Brasil, a Engenharia revela-se como fator vital
para a ampliacdo da infraestrutura, para a solug¢do de problemas de ordem econdmica ¢ social e
para a melhor na qualidade de servigos oferecidos para a sociedade como um todo. De modo
geral, a Engenharia anda lado a lado com o desenvolvimento.

Nesse contexto, o engenheiro civil constitui um importante agente quando se trata de
infraestrutura, pois cumpre o papel do principal responsavel para gerir projetos e construgdes
de edificios, portos, tineis, metrds, barragens, aeroportos, estadios, sempre apresentando
solugdes inovadoras e tecnoldgicas que priorizam a qualidade de vida.

Dentre as grandes areas de estudo da engenharia civil, a engenharia estrutural é o ramo
mais importantes em construgdes, visto que os demais elementos dependem da solidez
estrutural da edificacdo, isto ¢, de sua estabilidade. O principal objetivo do projeto de uma
estrutura ¢ possibilitar que a mesma atenda a sua fun¢ao de estabilidade sem entrar em colapso
e sem deformar ou vibrar de forma excessiva. Dentro destes limites, os quais sdo precisamente
definidos pelas normas técnicas, o engenheiro estrutural busca o melhor uso dos materiais
disponiveis concomitantemente com o menor custo possivel de constru¢do ¢ manutencdo da
estrutura.

Os métodos analiticos classicos possibilitam o calculo exato dos deslocamentos,
deformagdes e tensdes na estrutura em todos os seus pontos, isto €, nos seus infinitos pontos.
Mas tais solugdes sdo somente conhecidas para problemas de baixa complexidade, pois se
possuimos uma estrutura com mais de 3 esforcos desconhecidos, ndo sera possivel em geral
modela-la por métodos analiticos pois so ter-se-a 3 equagdes de equilibrio.

Dessa forma, desenvolve-se procedimentos aproximados, que sdo aplicados em carater
geral, ndo dependendo da forma da estrutura e das condigdes de carregamento, dentro da
precisdo aceitdvel na engenharia. Este caminho alternativo aos procedimentos analiticos
classicos constitui-se no foco central da solugdo do problema proposto e dara origem ao Método

dos Elementos Finitos (MEF). A Figura 01 esquematiza as duas abordagens.
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Figura 01: Esquema operacional dos Métodos Classicos e do Método dos Elementos Finitos.
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Ainda nesse contexto, tem-se que as principais etapas do projeto estrutural sdo:

e Elaboracdo do esquema estrutural;

e Determinacdo das cargas atuantes na estrutura;
e (Calculo dos esforcos e deformacoes;

e Verificagdes quanto a aceitabilidade;

e Dimensionamento dos elementos estruturais;

e Detalhamento do projeto para execugao.

O presente trabalho visa equacionar o Método dos Elementos Finitos para o calculo de
esforcos e deformagdes em vigas buscando seu consequente dimensionamento, apresentar o
software desenvolvido com esse objetivo, resolver aplicacdes reais do tema com diferentes
complexidades e evidenciar o importante papel da Matematica como ferramenta teorica,

principalmente da Algebra Linear, Calculo Diferencial e Integral e Calculo Numérico.

Equacionamento do Problema
Idealizacio de Sistemas — Modelos Discretizados

Considerando que a compreensdo de diversos processos e fendmenos se torna
simplificada quando se estuda os mesmos de forma fracionada, torna-se inerente a mente
humana querer subdividir os sistemas em seus componentes individuais, ou em seus elementos.
Nesse contexto, vem a tona a ideia de que, a partir do entendimento do comportamento de cada
elemento entende-se o comportamento do conjunto, independente da complexidade do

problema. Em suma, busca-se compreender o todo por meio do entendimento das partes. No
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ambito da engenharia e da ciéncia, comumente se apropria desta sistematizagdo para a

abordagem dos problemas. A Figura 02 apresenta estruturas discretizadas.

Figura 02: Exemplos de sistemas discretizados.

Fonte: EBAH — Método de Elementos Finitos.?

Sistemas Continuos

No cenario em que estamos trabalhamos, define-se o sistema continuo como aquele que
estuda o problema em sua totalidade. Em nosso caso, a Teoria da Flexdo de uma Viga foi
desenvolvida por E. Winkler (1867), e a Solu¢do Analitica permite determinar o deslocamento
vertical v, para todos os valores de x, ou seja, a solugdo ¢ obtida para todos os pontos da viga,
através de uma fun¢do matematica modelada com as condi¢cdes de contorno dadas. Dessa
maneira a viga, objeto de analise, ¢ estudada como um Sistema Continuo, uma vez que a solugio

¢ obtida para todos os pontos que constituem o corpo continuo.

Sistemas Discretos

O tratamento do equilibrio da estrutura pode ser realizado considerando-a um Sistema
Discreto. A ideia da Discretizagdo de Sistema Continuo leva em conta a divisdo da estrutura
em um numero finito de partes ou elementos, de sorte que a estrutura inteira ¢ modelada por

um agregado de estruturas "simples". Denomina-se os pontos de conexdo entre os elementos

3 Disponivel em: <http://www.ebah.com.br/content/ ABAAAAG6IEAA/metodo-elementos-finitos>
Acesso em 23 de fev. 2016.
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por Nos do Modelo e faz-se importante dizer que sdo nesses nos em que as forgas sdo aplicadas
e os deslocamentos sdo medidos.

Vale ressaltar que no modelo discretizado, ndo se busca calcular as deformagdes nos
infinitos pontos da viga, como no caso continuo. Com a discretizagdo, calcula-se somente as
deformagdes em alguns pontos (chamados de nés do modelo) e julga-se que os mesmos sdo
suficientes para representar adequadamente o deslocamento do sistema inteiro.

Uma das razdes pelo qual o Método dos Elementos Finitos obteve sucesso desde o inicio
de seu equacionamento até os dias de hoje € que o seu conceito fundamental, a discretizacdo,
acarreta em muitas equagdes algébricas simultaneas, que sdo geradas e resolvidas de forma
simples com o auxilio de softwares numéricos.

A Figura 03 resume o processo de discretizacao.

Figura 03: Método comumente empregado para analise de sistemas discretos.
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Fonte: ALVES, 2003.
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Analise Matricial de Estruturas

A Analise Matricial de Estruturas e, em consequéncia, o Método dos Elementos Finitos
possuem como fundamento inicial a relacdo entre forgas e deslocamentos nodais para cada
elemento individual. Essa importante ideia esta associada ao conceito de Rigidez.

O caso mais simples neste contexto ocorre com molas: a constante elastica da mola, que
¢ a medida d rigidez da mola, ¢ representada através da relagdo entre a forga aplicada e o
deslocamento medido na extremidade da mola. Dessa forma, tem-se que F = k d.

De forma analoga ao que ocorre com a mola, acontece em um elemento finito, todavia
em carater mais amplo. Na mola existe apenas o conceito de rigidez axial, pois ela transfere
apenas forcas axiais. Em uma viga, por sua vez, estdo presentes varios componentes de rigidez
simultaneamente, como rigidez axial, rigidez a flexdo, rigidez a torc¢do e ao cisalhamento e isso
fara a relagdo entre forgas e deslocamentos contarem com uma maior complexidade. Contudo,

temos de modo geral que a equagdo (01) governa a analise matricial de estruturas.

[F] = [K] [U] (01)

Onde:

[F] ¢ a matriz com todas as cargas nodais;
[K] ¢ a Matriz Rigidez da Estrutura que relaciona as forgas e os deslocamentos nodais;

[U] é a matriz coluna com os deslocamentos nodais.

Visto isso, o foco do problema se torna a compreensdo ¢ determinacdo da Matriz Rigidez

da Estrutura.

Leis Fundamentais
A elaboragdo do modelo matematico que representa a estrutura de forma discreta €
realizada por meio da aplicagdo de importantes leis da Mecénica Estrutural. Neste contexto, a

estrutura deve satisfazer trés postulados.
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Lei do Equilibrio de Forgas

Levando em conta a condig@o de equilibrio da estrutura, podemos aplicar as Equagdes
de Equilibrio advindas da Mecanica, equacdo (02), a cada um dos elementos isoladamente. De
forma semelhante, tais equagdes podem ser aplicadas para cada elemento, sendo que, se os

elementos estdo em equilibrio, a estrutura como um todo também estaria.
Z F; =0, i=xyz (02)
i

Lei da Compatibilidade de Deslocamentos
Impde que todas as extremidades de elementos conectadas a um mesmo no, estdo
sujeitos aos mesmos componentes de deslocamentos, ou seja, a estrutura nao "abre". A Figura

04 ilustra essa ideia.

Figura 04: Trelica deformada com compatibilidade de deslocamentos mantida.

Fonte: ALVES, 2003.

Lei de Comportamento do Material

Quando se transmite esfor¢os ao longo da estrutura, a mesma se deforma em virtude das
forcas internas. Na maioria das aplicacdes praticas, os esfor¢os internos crescem
proporcionalmente as deformagdes. Esta relagdo linear, comum no estudo da resisténcia dos
materiais, constitui a conhecida Lei de Hooke. No estudo do Método dos Elementos Finitos

admite-se que os elementos respeitam essa condi¢do. Desta forma, segundo a Resisténcia dos
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Materiais, utiliza-se as equagdes (03), (04) e (05) para a determinagdo da Matriz Rigidez do

Elemento de Viga.

F=K U (03)

1x=f y2dA (04)
A

dv. M 05

dx2  E I, (05)

Cada um dos parametros envolvidos em tais equagdes sera explicado de forma detalhada

neste momento.

Momento de Inércia

O momento de inércia de area I, conhecido também como segundo momento de area ou
segundo momento de inércia é uma propriedade geométrica da secdo transversal de elementos
estruturais. Fisicamente, 0 momento de inércia esta relacionado com as tensdes ¢ deformagoes
que aparecem por flexdo em elementos estruturais e junto com as propriedades do material
determina a resisténcia do elemento sob flexao.

Define-se o momento de inércia de area pela integral do produto dos elementos de area
de uma figura plana pelo quadrado de suas distdncias a um eixo, ou seja, dividimos a area em
questdo em partes infinitesimais e fazemos um somatério da multiplicagdo dessas areas pelo

quadrado de suas distancias. [sso esta representado pela equacao (06).

I, = f y2dA (06)
A

Geralmente trabalha-se com vigas de se¢do retangular, ou de composi¢do de secoes
retangulares. Sabendo disso e aplicando a equagdo (06) para uma area retangular de lados b e
h (vide Figura 05), com o eixo passando pelo seu centro, ¢ paralelo ao lado b, obtém-se a

equacdo (07).
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A Tabela 01 mostra valores do Momento de Inércia para outros tipos de secdes.
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Tabela 01: Valores do Momento de Inércia para outras se¢des planas.

Forma da segdo Momento de Inércia no centroide
b 3
Triangular 36
T ort
Circulo 4
mort
Semicirculo 8
T ort
Quadrante 16

Quando se lida com se¢des que sdo composi¢oes das figuras planas basicas (como uma
secdo I, que é composta de trés retangulos), faz-se necessario utilizar o Teorema de Steiner,
exibido abaixo, para obter o valor do Momento de Inércia no centroide da peca.

105

Teorema de Steiner

O Teorema de Steiner, também conhecido como Teorema dos Eixos Paralelos, constitui
uma ferramenta matematica que possibilita o calculo do momento de inércia em pontos fora do
centroide, o que se torna util quando trabalha-se com se¢des compostas de mais de uma figura
plana basica. Deste modo, suponha que busca-se calcular o momento de inércia em um ponto
O em relagdo ao eixo x' que estd fora do centroide de uma determinada se¢do. A Figura 06

ilustra essa situacdo.
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Figura 06: Calculo do Momento de Inércia em relagdo a um novo eixo.

Assim, o momento de inércia em relacdo ao eixo x, passando sobre o centroide, &, por 106

definicdo:

Ly, = f (x?+y?)dA
A

O momento de inércia relativo ao novo eixo (x'), que dista d entre o centrdide e o eixo

I, = J ((x d)?+y?)dA
A

Expandindo o quadrado dentro da integral, vem que:

I;0=f x* 2 x d+d2+y2)dA=f (x2+y2)dA+d2f dA 2 df xdA
A A 4 A
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Por definigdo, o primeiro termo é o I, o segundo resultaem A d? e o terceiro se anula
uma vez que o centroide esta localizado na origem. Deste modo, demonstra-se o Teorema dos

Eixos Paralelos - (08).
ILy=1I,+A4 d? (08)

Moédulo de Elasticidade Longitudinal do Material

O Modulo de FElasticidade E, também conhecido como Modulo de Young, é uma
constante mecanica intrinseca dos materiais, dependente da composi¢do quimica, da
microestrutura e de defeitos que fornece uma medida da rigidez de um material sélido. Trata-
se de um pardmetro muito importante a para a aplicagdo de materiais pois esta associado com
a descricdo de varias outras propriedades mecanicas. Sua afericdo se da em laboratorio por meio

da razao entre a tensdo exercida em um material e a deformagao sofrida pelo mesmo - Equacdo

(09).

o
E = p (09)

Para efeitos de ilustragdo, imagine uma borracha e um metal, ambos submetidos a uma
mesma tensdo. Verifica-se uma deformacdo eldstica muito superior na borracha quando
comparada ao metal. Tal fato revela que o Modulo de Elasticidade Longitudinal do metal é mais
alto que o da borracha e, desta forma, se requer a aplicacdo de uma tensdo maior para que ele
sofra a mesma deformacao verificada na borracha.

A Figura 07 apresenta um resultado tipico de um Ensaio Tensdo x Deformagao, no qual
se afere o valor de E. Note que até o denominado Limite de Proporcionalidade (que geralmente

¢ adotado para projetos buscando a seguranga) E = tan(a) = o' (&).
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Figura 07: Diagrama de um Ensaio Tensao x Deformagao.
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O Modulo de Elasticidade ¢ medido em unidades de pressdo (no geral Pa ou %). Alguns

valores tipicos do Modulo de Young para diferentes materiais estdo expostos na Tabela 02.

Tabela 02: Valores tipicos do Mddulo de Elasticidade para diferentes Materiais. 1 O 8
Material Modulo de Elasticidade [GPa]
Diamante 1000
Tungsténio 406
Acos de Baixa Liga 200
Ferro 196
Aluminio 69
Vidro 69
Concreto 25
Nylon 2-4

Fonte: CIMM - Centro de Informa¢ao Metal Mecanica.

Equacéo Diferencial da Linha Elastica
Por defini¢do, Linha Elastica é a curva que representa o eixo da viga apos a deformagao.
A Figura 08 mostra a linha elastica em um caso real de viga. Nesta, a deflexdo v ¢ o

deslocamento de qualquer ponto no eixo da viga.
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Figura 08: Linha elastica de uma viga com a aplicacdo de uma carga vertical P.
P
A B
' = .
v Linha Elastica
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Fonte: VANDERLEI, 2009.
No momento em que a viga ¢ flexionada, em cada ponto ao longo do eixo x ocorrem
uma deflexdo (v) e uma rotagdo (6). Esta rotagdo ¢ o angulo entre o eixo x e a tangente a curva

da linha elastica. A Figura 09 exibe tais variaveis.

Figura 09: Analise diferencial da linha elastica. 1 O 9

de

v+ dv

M
j
X

" | .

Fonte: VANDERLEI, 2009.

Observando a Figura 09, obtemos que:

U

7]
ds’

p dd =ds >k =

D

,d@ em radianos.
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Ainda observando a Figura 09, encontra-se a Equacdo da Inclina¢do da Linha Elastica

— Equacdo (10).
v
—=tand (10)

Dai da equagdo (10), tira-se que:

e 0= arcta(nd—v);
dx

e cosf =—;

sl3 BIR

e senf =

Visto que uma estrutura apresentara pequenos angulos de rotagdo, obtém-se as equacoes 1 1 O

(11) e (12).
1 dé
ds ~dx > k==-=— (11
p dx
dv
tan =0 >—=20 (12)
dx

Derivando a equagdo (11) em relacdo a x e igualando a mesma com a equagéo (12),
encontra-se a equacdo (13). Vale ressaltar que essa ultima equagdo ¢ valida somente para

pequenas rotagoes.

. 1 d*v 13
Ademais, para materiais elastico lineares, ¢ valida a Lei de Hooke - equagao (14).
1
oy =E & e sx=; yv=k y (14)
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Além disso, a equagdo (15), fornece a definicdo de Momento:

M=f o, dA y (15)
A

Relacionando as equagdes (14) e (15), encontra-se a equagao (16).

M=f E (k y) y dA

A

>M=E k fyz dA >M=E k I,
A

n k= (16)

111

Por fim, substituindo a equagdo (16) na equagdo (13), chegamos finalmente na equagdo

(17).

— = (17)

A equagdo (17) ¢ a famosa Equagdo Diferencial da Linha Elastica.

Matriz de Rigidez do Elemento de Viga

O modo como todas as forgas ¢ deslocamentos de um elemento finito de viga se
relaciona é expresso pela Matriz Rigidez do Elemento [K]°.

Considerando as condigdes para que seja possivel realizar a multiplicacdo de duas
matrizes ¢ sabendo que a matriz de forgas nodais possui quatro linhas assim como a matriz de
deslocamentos, conclui-se que a Matriz de Rigidez de Viga, com somente rigidez a flexdo, deve

ter dimensdo 4 x 4. Assim, resulta que:
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Portanto, o problema consiste basicamente em determinar quais sdo os coeficientes k; ;
da Matriz Rigidez do Elemento de Viga. D4 ideia de discretizagdo, tem-se que os termos da
matriz de rigidez do elemento finito representam relacdes de causa e efeito. Neste contexto, a
causa € um deslocamento unitario imposto em um grau de liberdade, e os efeitos sdo forgas que
surgem nos graus de liberdade do elemento devido a esse deslocamento.

Visto isso, o coeficiente k; ; da Matriz de Rigidez de um Elemento Finito representa a

for¢a no grau de liberdade i devido ao deslocamento unitario imposto ao grau de liberdade j,
mantendo-se os outros graus de liberdade bloqueados, ou seja, discretizando o sistema.

Pode-se entdo determinar os coeficientes da Matriz de Rigidez do Elemento de Viga, 1 1 2
impondo deslocamento unitarios isoladamente nos graus de liberdade e avaliando as forgas que
aparecem nos graus de liberdade do elemento.

Todo esse procedimento ¢ resumido pela Figura 10.
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Figura 10: Resumo do procedimento para determinar os coeficientes da Matriz de Rigidez do

Elemento de Viga.

(Jli 53

2
Graus de Liberdade (G.L.) do Elemento da Viga com apenas Rigidez a Flex3o.

Deslocamento unitdriono G L. 1

Impde-se
desiocamento
untdriono GL. 1,

As forgas que surgem
nos cemais graus

mantenco-se 0s outros > “;:;;:g::&“
graus de liberdade Matriz de Rigidez
bloqueados S

1ky 1
=== it

111 & o o

al s o o

k- Forga no G.L.1 cevido a0
desiccamento unitirio no G.L. |

Analogicamente, teremos para os outros Graus de Liberdade: 1 1 3
Oeslocamento unitdriono G.L. 2 Deslocamento untdriono G.L.3  Deslocamento untariono GL. 4
o=1

e o '-E;;I L4 . s e l-k“—l
Ik : lk 1
. . | . e | ]
faje= Y s Bt 0 R
DL . o« o ke ° o e pky
| o |
- :_k‘_: . . s . . Lk‘.ll . - . . ld‘“:

Fonte: ALVES, 2003.

e Para:vy =1

A Figura 11 exibe a viga esquematizada nessa situagao.
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M
T

L =

Fazendo um somatério de momentos no ponto 1, chega-se a equagdo (18).

114

1

Realizando o somatério de momento em um ponto x qualquer, encontra-se a equacao

(19).

ZMi=>M=M1+Rx (19)
X
dzv_M
dx? EI
L VY VLS 20
dx Y TE T Ta (20)
s ()_1 M1x2+Rx3+ N ’1
v(x _EIX > o tax+to 21

Sabendo que 6(0) = 0, da equagdo (20), tira-se que ¢; = 0.
Agora, dado que v(0) = 1, na equagdo (21), obtém-se que a equagdo (22).
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2=1 (22)

Tendo ainda que v(L) = 0, na equagéo (21), encontra-se que a equagdo (23).

_ M;I> RIP? 23
€ = 2 6 (23)
Substituindo a equagdo (22) na (23), obtém-se a equacado (24).
1 y ML*>  RL*\ L ”
El 2 6 ) @5
Por simetria M; = M,, dai, da equacdo (18), chega-se a relacdo (25). 1 1 5
RL
My = —— (25)

Substituindo a equagdo (25) na (24), encontra-se que:

_ 12EI

6EI
R1=R2— L3 e p—

e M1=M2—L2

e Para:0, =1

A Figura 12 mostra a viga esquematizada nessa condigéo.
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Fazendo um somatério de momentos no ponto 1, chega-se a equagdo (26).
ZMi =>M; +M, = RL (26)
2

Realizando o somatério de momento em um ponto x qualquer, encontra-se a equacao

27).
ZMi=>M= M; + Rx (27)

Da Equacao Diferencial da Linha Elastica, equagio (17), tem-se que:

d’v M
dx2  EI
dv 1 Rx?
=>a=0(x)=ﬁ x( M1x+7+c1> (28)

M;x?> Rx3
= v(x) =— X +—+cx+cy (29)

2 6
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L=1 (30)

Agora, dado que v(0) = 0, na equagdo (29), obtém-se que ¢, = 0.

Dado ainda que v(L) = 0, na equagdo (29), encontra-se que:

G =— (BD

Substituindo a equagdo (31) na (30), obtém-se a equacado (32).

1 (ML RIL? _, 2
EI\ 2 6 | (32)

117

Ademais, tendo que 6(L) = 0, na equagéo (28), encontra-se que a equagéo (33).

RI?
C]_ = MlL T (3 3)

Substituindo a equagdo (33) na (30), obtém-se a equagdo (34).

L (ML R =1 34

Relacionando as equagdes (34) e (26), chega-se finalmente que:

As demais colunas sdo iguais as duas realizadas a menos de sentidos.
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Portanto, em nosso problema, a relacdo entre as forgas e deslocamentos nodais para o

elemento de viga com somente rigidez a flexdo, ¢ dada pela equacdo (35).

12 6 12 6
T E B I o
/1 6 4 6 2 o
M, 12 T 12 T 1
— L L L L
=(E I X 12 6 12 6 X . (35)
2 — — — _ 2
L3 L? L3 L?
M, 6 2 6 4 92
L2 L 2 L
onde:
e f; ¢ aforga concentrada atuante no no i;
e M; é amomento fletor atuante no no i;
e v; ¢ o deslocamento vertical no no i; 1 1 8
e 0, ¢ arotacdo em relacdo ao eixo no no i;
e L é o comprimento do vao da viga.
Aplicacoes

Com o intuito de exemplificar o uso do MEF, serdo resolvidos dois exemplos utilizando-
0. No primeiro, trabalhar-se-4 com uma viga com apenas um elemento e no segundo com uma

viga constituida por dois elementos.

Exemplo 1
Deseja-se calcular o deslocamento vertical e a rotacdo na extremidade de uma viga em
balan¢o produzida em virtude da aplicagdo de uma carga de S0kN (cinco toneladas) também na

extremidade. Para tanto, considerar-se-4 uma viga com as seguintes caracteristicas:

Material: Concreto;

e Vao: 3 metros;

Secdo Transversal: Retangular (40 cm x 60 cm).
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A Figura 13 mostra um esquema do problema.

Figura 13: Viga em balango com carga de 5 toneladas na extremidade livre.

LEO kN

//

///{

3m

Resolugio: Dado que o material constituinte da viga € concreto, tem-se que:
kN
E=25 107 — 1 1 9
m

Ademais, pelo fato da se¢do ser retangular medindo 40 cm x 60 cm, vem, pela equagdo
(07), que:

b 3 04 06°
12 12

I =

=1=0,0072 m*

Discretizando e observando os nos, obtém-se que:

e L =3m;
e f,= 50KkN;
[ ] M2=0

A Figura 14 exibe o problema em questio discretizado em um elemento.
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Além disso, vale dizer que os valores de f; ¢ M; sdo a for¢a e 0 momento de rea¢do no
engaste, respectivamente. Assim, substituindo tais valores na equagdo (35), chega-se que ao

sistema de equacdes (36).

12 6 12 6
3% 32 3P 32
El e s 5 L 50 B] 120
1 — 7 ____ 4 1
o _(2,5.10 rr12).0,0072m x S, % 2 e x|
0 33 32 3P 32 0,
6 2 6 4
32 3 32 3
Isto é,
fi 0,444 0,666 0444 0,666 vy
M, | _ ; 0666 1,333 0,666 0,666 0,
sol =P8I X | 0444 0666 0444 0666 | X |v: (36)
0 0,666 0,666 0666 1,333 0,

Dado que o deslocamento e a rotagdo no primeiro no, v; € 6, sdo nulos pelo fato da

extremidade estar engastada, chega-se no sistema de equagdes (37).

0,444 0,666 123 50
1,8.10° x X = (37)
0,666 1,333 0 0

Fazendo L, = % .L, + L, obtemos o sistema de equagdes (38).
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0,444 0,666 50
ll=lal e
0,223 50

1,8.10° x

Através das equagoes (38), encontra-se o valor da rotagdo nond 2, 6, .

1,8.10°.0,223.6, = 50
= 0, = 1,250.103rad (sentido horario)*

Substituindo o valor de 8,, no sistema de equacdes (38), obtemos o valor de v,.

1,8.10°.(0,444v, 0,666 ( 1,250.107%)) = 50
S>v,= 2,49.1073m = 2,49 mm (para baixo)5
Por fim, vale mencionar que ¢ possivel ainda calcular os valores da reagdo (f;) e do
momento (M;) nono 1.
Substituindo os valores encontrados no sistema de equagdes (36) encontra-se os valores

dos esforgos no engaste:

fi=18.10%( 0,444.( 249.107%) + 0,666.( 1,250.107%))
M; = 1,8.105.( 0,666.( 2,49.107%) +0,666.( 1,250.107%))

=>{ f1=50kN
M, = 150 kN.m

4 0 método foi equacionado considerando a rotagdo no sentido anti-horario como positiva.
5 O método foi equacionado levando em conta o deslocamento positivo para cima.
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Comparacio com o software estrutural Ftool

Utilizando o Software Ftool (versdo educacional 3.01), um programa grafico-interativo
para ensino de comportamento de estruturas, modelou-se a viga em balango do exemplo 1 para
verificar os valores dos deslocamentos calculados pelo software e comparar com os valores de

nosso equacionamento. A Figura 15 apresenta os resultados encontrados.

Figura 15: Resolucgdo da viga do exemplo 1 pelo Ftool.

Displ./rotat. at local pos.:x= 3.00 m L= 3.00m - Dx 0.000e+000 mm Dy: -2.500e+000 mm Raz: -1.250e-003 rad

\

LLLLL

122

s 3.00m —

Fonte: Ftool.

Observando a figura, constata-se que os valores encontrados por ambos os métodos
concordam em sua totalidade. Assim, corrobora-se a eficiéncia do Método dos Elementos

Finitos.

Exemplo 2
Pretende-se calcular a rotagdo e o deslocamento vertical na extremidade livre bem como
a rotacdo no apoio movel, produzidos em virtude de uma série de esforgos. A Figura 16 mostra

a viga a ser resolvida.

Rev. Bras. de Iniciacio Cientifica (RBIC), Itapetininga, v. 5, n.3, p. 96-129, abr./jun., 2018.



de miciacao cientifica

ISSN: 2359-232X
Figura 16: Viga objeto de estudo do exemplo 2.

80 kN 30 kN
25 kN.
N aysNm
N
N
3m 2,5m
e . ouilf -

Conjecturamos uma viga com as seguintes caracteristicas:

123

e Material: Concreto;
e Vao: 5,5 metros;

e Secao Transversal: Retangular (30 cm x 50 cm).

Resolug¢iao: Dado que o material constituinte da viga ¢ o concreto, tem-se que:
, kN
E=25 10—
m

Dai, pela equacdo (07), calcula-se o0 momento de inércia para a se¢do do presente

problema.

b 3 03 05
12 12

I = =[=0,003125m*

Discretizando e observando os nos, encontra-se que:
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A Figura 17 apresenta a discretizagdo da viga objeto de estudo deste problema.

Figura 17: Viga do exemplo 2 discretizada.

Por trata-se de uma estrutura com dois elementos, utilizaremos os conceitos da
discretizagdo, ou seja, calcularemos a Matriz de Rigidez para cada elemento para, em seguida,
monta a Matriz de Rigidez da Estrutura e calcular as deformagdes. Assim, para o primeiro

elemento temos a seguinte Matriz de Rigidez — equacao (39).

12 6 12 6
33 33 3P 32
6 4 6 2

k], = <2,5.107%>.0,003125m4 x 3122 3 1322 3 (39)
33 32 33 32
6 2 6 4
32 3 32 3

Analogamente, para o segundo elemento, temos a matriz representada na equagao (40).
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[k], = (2,5.1075).0,003125m4 X
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12 6 12 6
25% 252 253 252
6 4 6 2
2,52 25 252 25
12 6 12 6
25% 252 25% 25?2
6 2 6 4
2,52 25 252 25

(40)

Pelo fato da estrutura possuir 3 nos, teremos 6 possiveis deformagoes e, portanto, a

Matriz de Rigidez da Estrutura sera quadrada de dimensao 6 — equagdo (41).

[K]exe =

[[131]

)

(4D

125

Relacionando as equagdes (39) e (40) com a equagdo (41), encontra-se finalmente a

Matriz de Rigidez da Estrutura - equagdo (42).

[K]6x6 = 78125 X

6 12
32 33
4 6
3 32
6 12 12
32 337 25%
2 6
3 32 ' 2,52
. 12
2,52
. 6
2,52
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32 2,52 2,53 2,52
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3 25 2,52 2,5
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0,444 0,666 0444 0,666 0
0,666 1,333 0,666 0,666 0 0
0444 0666 1212 0293 0768 0,960
[Klexe = 78125 X (42)
0,666 0666 0293 2933 0,960 0,800
0 0 0768 0960 0,768 0,960
0 0 0,960 0,800 0,960 1,600

Substituindo a equagdo (42) na equag@o que governa a analise matricial de estruturas:

fi 0,444 0,666 0,444 0,666 0 0 1
M, 0,666 1,333 0,666 0,666 0 0 6,
f2 0,444 0,666 1,212 0,293 0,768 0,960 V2
= 78125 X X
M, 0,666 0,666 0,293 2,933 0,960 0,800 0,
f3 0 0 0,768 0,960 0,768 0,960 V3

. 126

M 0 0 0,960 0,800 0,960 1,600

Uma vez que o n6 1 esta engastado ¢ o0 nd 2 esta sobre um apoio mével, tém-se que os
valores de v4, 04 € v, sdo nulos. Substituindo-os adjuntos dos valores dos esfor¢os dados no

problema, obtém-se que a equacao (43).

fi 0444 0666 0444 0,666 0 0
M, 0666 1333 0,666 0,666 0 0
80kN 0444 0666 1212 0293 0768 0960 0
= 78125 x X (43)
25kN.m 0666 0666 0293 2933 0960 0800 6,
30kN.m 0 0 0,768 0960 0768 0960 v;
0 0 0 0960 0800 0960 1,600 65

Portanto, para o calculo das deformagdes, dispor-se-a do sistema de equagoes (44).

25kN.m 2,933 0,960 0,800 0,
30kN.m|= 78125 x | 0,960 0,768 0,960 | x [v; (44)
0 0,800 0960 1,600 0,
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Resolvendo tal sistema, encontra-se os seguintes valores para as deformagoes:

e 0, 4,8012 10~ *rad (sentido horario);
e v3= 3,200 103m= 3,200 mm (para baixo);
e 0;= 1,68012 1073 rad (sentido horario).

Conhecendo as deformagdes, torna-se possivel ainda calcular os valores dos esforgos no

engaste. Substituindo-os na equagdo (43), temos que:

e f,=78125 0,666 0, =78125 0,666 4,8012 10*
= fi 25 kN;
e M, =78125 0,666 6, =78125 0,666 4,8012 10*
>M, 25kN.m. 127

Comparacao com o software estrutural Ftool
Novamente buscou-se contrastar os resultados pelo MEF com os fornecidos pelo Ftool.

Os resultados fornecidos pelo software foram:

e 0,= 4,800 10~*rad;
e v3= 3,198 10 3m = 3,198 mm;
e 9;= 1,680 1073 rad.

Comparando-os, nota-se que os mesmos sdo muito proximos e¢ pode se atribuir as
divergéncias as aproximagdes realizadas na resolu¢do do método. As Figuras 18 e¢ 19

apresentam os resultados encontrados.
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Figura 18: Resultado das deformagdes no né 1 da viga do exemplo 2.

Displ./rotat. at local pos: x = 2.50'm L=2.50m - Dx: 0.000e+000 mm Dy: -3.198e+000 mm Rz -1.680e-003 rad

3
Fonte: Ftool.
Figura 19: Resultado das deformagdes no né 2 da viga do exemplo 2.
Displ./rotat. at local posax= 000 m L= 2.50m - D 0.000e+000 mm Dy: 0.000e+000 mm Rz -4.800e-004 rad
3 7

Fonte: Ftool.

Outra vez, nota-se que a concordancia entre os valores foi altissima e isso confirma a

eficiéncia do Método dos Elementos Finitos.

Conclusio

Buscando analisar estruturas mais complexas, um procedimento aproximado que pode
ser aplicado de forma geral, independente da forma da estrutura e da condi¢do de carregamento,
dentro de uma precisdo aceitavel na engenharia ¢ o Método dos Elementos Finitos.

Em tal método, a ideia base para o equacionamento foi a discretizagcdo, onde, para se
estudar a estrutura, analisa-se elementos da mesma para, a partir de pequenas partes,
compreender o todo.

Com esse pensamento, equacionou-se o0 Método dos Elementos Finitos, que consiste de
operagdes matriciais, que possuem como fundamento a relacdo entre forgcas nodais e
deslocamento nodais para cada elemento individual.

Para exemplificar o funcionamento do método, calculou-se as deformacdes de duas

vigas, uma em balanco e outra continua. Na resolucdo do sistema de equagdes foi utilizado o
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Meétodo de Eliminagdo de Gauss, pois julgou-se que o mesmo se trata de um método rapido,
pratica e com 6tima precisao.

E valido ressaltar que contrastando os valores encontrados com os gerados pelo software
estrutural Ftool, verificou-se que os mesmos coincidem com elevada concordéncia.

Portanto, confirmou-se a eficiéncia do Método dos Elementos Finitos e ratificou-se a
praticidade do mesmo, visto que, a discretizagdo, acarreta em muitas equagdes algébricas
simultaneas, que sdo geradas e resolvidas facilmente com o auxilio de softwares numéricos.
Neste contexto, a programacao do método com o auxilio de métodos numéricos, torna-se uma

importante ferramenta de auxilio para projetistas no ambito da engenharia.
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