

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

66

DESENVOLVIMENTO DE JOGO 3D DE FUTEBOL DE ROBÔS

DEVELOPMENT OF ROBOT SOCCER 3D GAME

DESARROLLO DE JUEGO 3D DE FÚTBOL DE ROBOTS

Diego Eduardo Carvalho1
Antonio Valerio Netto2

Resumo: O RoboGol é um sistema criado para a realização de partidas de futebol de robôs. Inspirado no futebol
de mesa, popularmente conhecido como "totó" ou "pebolim", o sistema eletrônico conta com uma mesa energizada
que alimenta de um a quatro robôs. Estes robôs são controlados individualmente por meio de controles, modelo
Arcade, fixados na mesa. O desenvolvimento para o formato online (web) foi à alternativa encontrada para atingir
um maior número de usuários. Este artigo descreve as tecnologias utilizadas na implementação, à solução gerada
e as dificuldades encontradas no processo de desenvolvimento.
Palavras-chave: Game 3D. futebol de robôs. Unity. RoboGol.

Abstract: RoboGol is a system designed for robot football matches. Inspired by table soccer, popularly known as
"totó" or "pebolim", the electronic system has an energized table that feeds from one to four robots. These robots
are controlled individually by means of controls, arcade model, fixed to the table. The development for the online
format (web) was the alternative found to reach a greater number of users. This article describes the technologies
used in the implementation, the solution generated and the difficulties encountered in the development process.
Keywords: Game 3D. Robots soccer. Unity. RoboGol.

Resumen: RoboGol es un sistema creado para la realización de partidos de fútbol de robots. Inspirado en el fútbol
de mesa, popularmente conocido como "totó" o "pebolín", el sistema electrónico cuenta con una mesa energizada
que alimenta de uno a cuatro robots. Estos robots son controlados individualmente por medio de controles, modelo
Arcade, fijados en la mesa. El desarrollo para el formato online (web) fue la alternativa encontrada para alcanzar
un mayor número de usuarios. Este artículo describe las tecnologías utilizadas en la implementación, la solución
generada y las dificultades encontradas en el proceso de desarrollo.
Palabras-clave: Game 3D. fútbol de robots. Unity. RoboGol.

Envio 11/09/2017 Revisão 14/09/2017 Aceite 05/10/2017

1 Graduado. ICMC/USP. E-mail: contato@xbot.com.br.
2 Doutor. ICMC/USP. antonio.valerio@pq.cnpq.br

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

67

Introdução

O RoboGol (Robogol, 2015) foi um sistema criado para a realização de partidas de

futebol entre robôs móveis. O equipamento é constituído de uma mesa eletrônica no formato

de campo de futebol com dimensões 2,85m x 1,60m x 0,90m pesando aproximadamente 160

kg, com um a quatro robôs pesando em torno de 4 kg cada um, controlados por joysticks modelo

Arcade fixados na mesa, além de uma bola de golfe. O projeto teve como objetivo realizar o

desenvolvimento do RoboGol para o formato online (web). Por meio dessa iniciativa, o sistema

irá simular em 3D, o ambiente real do jogo tornando possível que os usuários possam disputar

uma partida mesmo distante da versão física.

Para a execução desse projeto optou-se pela utilização da ferramenta Unity 3D versão

3.0 como motor de jogos (Unity 3D, 2015). O motor de jogos, mais conhecido pelo termo em

inglês “game engine”, é um programa de computador ou um conjunto de bibliotecas que fornece

uma abstração dos detalhes da construção de um jogo digital. As funcionalidades tipicamente

encontradas em uma engine são: renderização gráfica 2D e 3D, simulação dos aspectos físicos

e detecção de colisão. Fornece também uma abstração de hardware permitindo ao

desenvolvedor criar jogos sem se preocupar com a arquitetura da plataforma fim (Goldstone,

2009; Blackman, 2011; Wittayabundit, 2011).

A escolha da Unity 3D foi baseada no fato de possuir características que auxiliam o

programador a concluir seu trabalho de forma rápida e fácil, além de ter uma versão gratuita

para desenvolvedores iniciantes (Unity 3Da, 2015). A ferramenta não é apenas uma engine,

contando também com um ambiente integrado de desenvolvimento e com um sistema de

publicação que se enquadra na categoria de midleware. Middleware é o termo criado para

designar camadas de software que não constituem diretamente aplicações, mas que facilitam a

criação das mesmas (Watson, 2002; Greene, 2002). Dentre as características encontradas na

ferramenta é possível citar que os jogos digitais podem ser criados utilizando as linguagens de

programação: Boo, JavaScript ou C#. É compatível com diversos navegadores web e programas

de modelagem tridimensional. Além disso, possui uma interface gráfica, sistema de colisão,

iluminação e som. Outro ponto forte da Unity 3D é o fato de ser multiplataforma, podendo ter

jogos desenvolvidos tanto para desktops, mobile ou web.

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

68

Para a codificação do jogo 3D, a linguagem de programação escolhida foi o C#. Trata-

se de uma linguagem orientada a objetos desenvolvida pela Microsoft como parte da plataforma

“.NET”. Apesar da UNITY já possuir ambiente para criação e edição de código integrado ao

seu ambiente, foi utilizado o ambiente de desenvolvimento do Microsoft Visual Studio 2010®

(MICROSOFT, 2015) por possuir um maior material de consulta na Internet. O Visual Studio

2010® também foi utilizado como ferramenta para a criação dos diagramas UML (Unified

Modeling Language) que serviram de base para o desenvolvimento. O banco de dados utilizado

foi o PostgreSQL versão 8.4. O PostgreSQL é um SGBD (Sistema de Gerenciamento de Banco

de Dados) objeto-relacional open source, que possui funcionalidades sofisticadas como

controle de concorrência, tables spaces, cópias de segurança, tolerância a falhas, entre outras.

Com as ferramentas definidas fez-se a análise de requisitos seguindo o padrão da UML

e modelando o jogo com a aplicação de técnicas de análise orientada a objetos. A UML permite

ao engenheiro de software traduzir as regras de negócios por meio de métodos unificados com

modelos de análise usando regras definidas por Grady Booch, James Rumbaugh e Ivar Jacobson

(Presman, 2002). Os métodos de análise orientados a objetos definem as regras do problema

como um conjunto de objetos que possuem relação ou não entre si, podendo ou não herdar

atributos uns dos outros e que se comunicam por meio de mensagens (Presman, 2002).

Neste artigo são apresentadas as atividades desenvolvidas, assim como os resultados

obtidos e as dificuldades encontradas durante a execução do projeto. Também são descritas as

considerações finais sobre o trabalho realizado, além de comentar sugestões de trabalhos

futuros. Por fim, são apresentadas as referências citadas ao longo do texto.

Desenvolvimento do trabalho

O projeto teve como objetivo projetar e desenvolver o jogo RoboGol para a plataforma

web, ou seja, a solução final deveria ser executada por meio de um navegador web. O jogo

digital deveria se assemelhar ao correspondente real, que é utilizado para fins de

entretenimento. Atentou-se tanto para parte visual, quanto para a ambientação do jogador, no

que diz respeito à jogabilidade, visto que um dos objetivos do jogo é incentivar e estimular os

jogadores a realizar a recorrência de jogar novamente. A meta de desenvolvimento também

incluía que todas as informações das partidas e dos jogadores fossem armazenadas no banco de

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

69

dados e os desempenhos e estatísticas de cada usuário, exibidos na área de ranking e estatística

de partidas do site do jogo.

Para tanto, o jogo 3D deveria permitir que o jogador controlasse o robô virtual com

movimentos para frente, para trás e de rotação no próprio eixo. Seriam quatro robôs virtuais

idênticos no formato, mas dividido por cores em dois times. Deveria estar presente também o

campo de futebol com dois gols e uma bola branca. Além de permitir a exibição de um marcador

de tempo da partida e de um marcador de pontuação dos gols separado por time. Outros detalhes

não funcionais contemplados foram: uma boa iluminação ambiente, a visão completa de toda a

mesa e dos robôs nela posicionados, nitidez na diferenciação de cores entre os times, menu com

informações sobre os controles necessários para a realização das partidas e a visualização do

desempenho individual de cada jogador após cada partida (ranking).

Para o desenvolvimento do jogo RoboGol virtual foi realizado um estudo sobre as

funcionalidades e as características da engine Unity 3D. Com uma base de conhecimento

adquirida, deu-se início ao levantamento de requisitos do projeto juntamente com uma

modelagem de software por meio de diagramas de estado e de classe baseado nos padrões UML.

Após esta etapa concluída foram criados os documentos de definição de layout e itens que

estariam presentes em cada tela apresentada durante a execução do jogo. Com toda a

documentação concluída deu-se início a codificação e testes do jogo 3D.

Unity 3D

Como a Unity 3D possui um ambiente integrado de desenvolvimento, o ponto de

partida iniciou-se com a ambientação das telas e estrutura para a criação de jogos (Figura 1).

Os jogos são montados por meio de cenas que são como blocos ou etapas do jogo. Realizando

o desenvolvimento por cenas é possível economizar processamento, pois somente os elementos

presentes na cena ativa consumirão o processador.

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

70

Figura 1 - Ambiente de Desenvolvimento do Unity 3D.

A IDE (Integrated Development Environment) possui uma interface simples e

amigável que tem por objetivo facilitar o desenvolvimento dos jogos. Ela é composta por quatro

telas, cada uma com uma função especifica que são exibidas por padrão na inicialização do

sistema. São elas Scene, Hierarchy, Project, Inspector. Estas janelas possuem as principais

informações para o desenvolvedor realizar seu trabalho.

A janela Scene é a principal no ambiente de desenvolvimento. Ela é a janela que exibe

todos os elementos da aplicação, possibilitando a manipulação dos mesmos por meio de

rotações, posicionamento e alteração de sua escala. Nessa tela também é possível navegar por

entre os objetos permitido que se tenha uma visão de diversos ângulos e distâncias.

A janela Hierarchy exibe todos os elementos presentes em uma determinada cena em

edição. Esses elementos são organizados em uma hierarquia e exibidos em forma de árvore de

visualização que demonstra a composição da cena.

A janela Project é responsável pela manipulação dos arquivos que representam um

projeto, que contém os códigos (scripts), texturas, modelos tridimensionais, arquivos de áudio

e um componente próprio da engine, os prefabs. Prefabs são objetos armazenados que podem

ser utilizados inúmeras vezes em qualquer cena do projeto. A partir do objeto original é possível

instanciar qualquer quantidade de objetos que irão apresentar todas as características e

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

71

comportamentos do objeto base. Esse comportamento é similar a criar uma classe e instanciar

vários objetos em uma linguagem de programação orientada a objetos. A janela Project é

organizada de forma idêntica ao sistema de arquivos do computador, permitindo até que

algumas alterações ocorram diretamente nos diretórios do sistema operacional refletindo

diretamente no projeto.

A janela Inspector apresenta os componentes de um determinado objeto. A Unity 3D

constrói seus elementos por meio de composição. Dessa forma, ao selecionar algum item em

uma cena são exibidos todos os componentes desse objeto, como por exemplo, componentes

de Transformação, de renderização e de colisão. Cada componente é constituído de atributos

que são valores editáveis que influenciam diretamente o comportamento ou característica do

objeto.

A partir da familiarização desse ambiente de desenvolvimento o próximo passo foi

identificar os componentes que determinam um jogo desenvolvido nessa ferramenta. O

primeiro elemento e o principal é o Game Object, esse componente é um contêiner genérico

que serve de base para praticamente todos os outros componentes de um jogo. O Game Object

funciona como um repositório de funcionalidades. Cada componente acrescenta uma

funcionalidade ou comportamento ao objeto. Esse componente pode ser um objeto de

iluminação, uma geometria de colisão e até uma textura. Esse objeto pode se tornar qualquer

coisa na cena, sendo possível criar uma câmera simples até uma espaçonave interestelar

dependendo de quais elementos o compõe. Todo o Game Object possui como característica

inicial o componente Transform, responsável pelo posicionamento, orientação e escala no

sistema referencial da cena. É a partir Game Object que são criados os prefabs.

Apesar do editor da UNITY possuir ferramentas para a criação de objetos básicos

como esferas, cubos e cilindros, e ter ferramentas para coloração, efeitos de som e criação de

partículas. Para os jogos mais sofisticados é essencial à criação de objetos complexos como,

por exemplo, humanoides, veículos, ou sons das mais diversas formas. A UNITY permite que

elementos possam ser criados em programas de modelagem 3D especializados e importados

diretamente em uma cena. A esse procedimento se dá o nome de importação de assets. Assets

são artefatos que são importados de outras ferramentas de forma fácil e prática como um arrastar

de mouse diretamente no projeto. A engine aceita diversos formatos de modelos 3D, sons,

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

72

texturas e animações. Para o RoboGol virtual, tanto os robôs quanto as texturas foram

importados como assets. Já a mesa, os gols, a pontuação, o placar de tempo e a bola foram

criados a partir de elementos básicos encontrados no editor da UNITY.

O que garante o funcionamento adequado de um jogo é a movimentação dos elementos

condicionados as respostas do ambiente 3D a essa movimentação (por exemplo, colisão). A

engine utiliza internamente um motor de física da placa gráfica NVidia para efetuar simulações

de comportamentos físicos dos objetos. Esse motor de física foi desenvolvido para ser

executado utilizando o processamento de placas gráficas acarretando um melhor desempenho

na velocidade e na renderização dos elementos 3D. Além da simulação física por trás desses

elementos de colisão, os mesmos também são utilizados como gatilhos para geração de eventos

que podem ser tratados e interpretados durante a execução da cena 3D.

Os scripts são linhas de códigos implementados em qualquer uma das três linguagens

de programação suportados pela UNITY (JavaScript, C# ou Boo). Internamente, os scripts são

executados por meio de uma versão modificada da biblioteca Mono (implementação de código

aberto para o “.NET”). Scripts funcionam como qualquer outro componente e devem ser

incluídos nos objetos que responderão aos algoritmos criados. Na UNITY a comunicação entre

os objetos dentro de uma cena é realizada por meio de mensagens. Quando um objeto deseja

interagir com outro, o primeiro realiza uma busca na cena pelo segundo e executa um chamado

uma função de envio de mensagens. O segundo objeto recebe essa mensagem e responde a ela

conforme sua codificação.

Requisitos e Modelagem

Com maior domínio sobre a ferramenta UNITY, iniciou-se a fase de levantamento de

requisitos e da criação de artefatos UML. Os requisitos são regras de negócio (necessidades)

ou mesmo solicitações às quais o sistema deve atender. Em outras palavras é o nome dado ao

estudo das características que o sistema deverá ter para atender às necessidades e expectativas

de um usuário final. Os requisitos foram levantados por meio de entrevistas com os jogadores

do RoboGol e por meio do uso do equipamento físico. Os artefatos UML foram gerados e foi

montada a documentação do projeto.

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

73

A modelagem é a parte que se encarrega de Transformar os resultados dos requisitos

em um documento ou conjunto de documentos capazes de serem interpretados diretamente pelo

programador. Para o desenvolvimento de jogos, um dos principais documentos criados é o

diagrama de atividade. Esse diagrama mostra atividades sequenciais e paralelas de um processo.

O diagrama é útil para realizar modelagem de processo de negócio ou fluxo de trabalho e de

dados (Larman, 2007).

A Figura 2 representa o diagrama de atividade do gerenciamento do jogo 3D proposto.

Esse primeiro diagrama de atividade produzido foi o do funcionamento geral do jogo, ou seja,

todo o processo que não envolve o jogo e suas regras em si. O segundo diagrama (Figura 3)

trata do jogo em si, como é o seu inicio, as ações possíveis de serem tomadas e o que determina

seu termino.

Figura 2 - Diagrama de atividade referente ao gerenciamento do RoboGol.

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

74

Figura 3 - Diagrama de atividade do jogo RoboGol virtual.

O diagrama de classes é fundamental para dividir os problemas complexos em

problemas menores e mais fáceis de resolver. Esse diagrama facilita o entendimento do sistema

como um todo e serve de base para a codificação do mesmo. O diagrama de classes do RoboGol

virtual é apresentado na Figura 4.

Para a criação do RoboGol virtual foi necessário criar menus e telas de interação com

o usuário. Foram desenhados esboços dessas telas (Figuras 5a, 5b e 6).

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

75

Figura 4 - Diagrama de classes do RoboGol.

Figura 5 – (a) Esboço do menu principal. (b) Esboço da seleção de times.

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

76

Figura 6 – Esboço da tela da classificação.

Codificação

Para a codificação foi utilizada a técnica de orientação a objetos que possui como

características principais a implementação de classes, herança, polimorfismo e encapsulamento.

Diante disso, a linguagem de programação utilizada foi a C#. A codificação envolveu a criação

de scripts para a captura de colisões entre a bola e os gols para efetuar a marcação de pontuação.

Também foi realizada a codificação do contador de tempo e a finalização da partida quando o

limite de tempo se esgota. Outro script importante realiza a movimentação do robô controlado

pelo jogador humano e também o controlado automaticamente, isto é, quando o jogador joga

sozinho contra o time controlado somente pelo sistema.

O script do robô controlado pelo jogador humano verifica qual a tecla está sendo

pressionada no teclado e a partir dela define qual o movimento será realizado pelo robô. Caso

a tecla pressionada seja a seta para cima o robô se movimentará para frente, caso seja a seta

para baixo o robô se movimentara para trás. Caso seja a tecla da seta para esquerda, o robô

efetuará uma rotação no próprio eixo para a esquerda e caso seja a seta para direita o robô

rotacionará no próprio eixo para a direita. Para o robô controlado automaticamente o script

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

77

executa um algoritmo simples. Quando o jogo inicia, os robôs do time automático obtém um

valor randômico e a partir desse valor efetua a rotação para a esquerda ou para a direita, também,

de forma randômica. Após essa rotação, cada robô verifica se irá para frente ou para trás e por

quanto tempo. Caso um robô sofra uma colisão que não seja com a bola, ele repete o

procedimento. Se a colisão for com o elemento bola, continua o movimento que já estava

executando em direção ao gol adversário. Esse script de jogo automático foi chamado de “robô

maluco”.

A função do script da mesa é de computar o valor do gol para o time correto. Já o script

da bola visa garantir que após a mesma entre no gol, esta seja relançada a partir do centro da

mesa, como é o padrão do RoboGol físico.

Para realizar a publicação do jogo 3D em um servidor com acesso a Internet foi

necessária escolher a opção “acessar” no menu Build Settings e escolher a plataforma web.

Realizado este procedimento, o programa gera três arquivos: UnityObject.js, WebPlayer.html e

WebPlayer.unity3d. No arquivo WebPlayer.html é possível realizar algumas edições como, por

exemplo, o tamanho e posição da janela do jogo que ficará exibida no navegador, além das

frases apresentadas durante o carregamento do jogo. São estes três arquivos que deverão ser

anexados ao código do site no qual a aplicação ficará hospedada. A UNITY 3D assim como o

Adobe Flash necessita que o usuário instale um player para seu funcionamento. Caso o usuário

acesse a página web do jogo 3D e ainda não possua o web player, será aberta uma janela

solicitando que o mesmo efetue a instalação do aplicativo. Nessa janela estará constando um

link para o download do instalador.

Resultados Obtidos

A criação do menu principal foi realizada com a escolha de uma imagem de fundo

lembrando o gramado de um campo de futebol sobreposto pelos botões com labels. Os botões

são: iniciar, opções e sair. O botão “sair” finaliza o jogo e mostra o desempenho do jogador e

sua classificação, o botão “opções” abre a tela de opções onde são apresentadas informações de

como movimentar o jogador e opção de habilitar e desabilitar o som. Apesar desta versão não

contar com som, o menu já foi preparado para tal função. E por último, o botão “iniciar” passa

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

78

o jogo para a próxima tela que é responsável pela definição dos times por meio da escolha das

cores dos robôs. Essa tela de escolha do time pode ser visualizada na Figura 7.

Figura 7 – Tela de jogo na seleção de times.

No exemplo exibido na Figura 7, o time do jogador seria o de cor laranja. No próximo

passo, o jogador escolhe a coloração do time adversário, e logo após, o jogo inicia. O RoboGol

virtual possui uma mesa, dois gols, quatro robôs e uma bola. A câmera de exibição foi

posicionada simulando a posição que o jogador fica perante a mesa durante uma partida real.

Para a iluminação foram posicionadas quatro luzes com os feixes em formato de cone, uma em

cada canto da mesa dando a sensação de ambiente fechado. Para complementar o cenário foram

posicionadas paredes para auxiliar na limitação visual que o jogador pode ter do ambiente 3D.

O jogo inicia com duração padrão de cinco minutos. Após o termino do tempo de jogo,

o time que acumular mais gols é o vencedor. Ao término da partida, o jogo retorna ao menu

inicial. Tanto os pontos efetuados (gols marcados) durante a partida quanto quem venceu ou

perdeu são computados para compor o desempenho de cada jogador na classificação por pontos

(ranking). São dados válidos para a composição da classificação os seguintes itens: pontos,

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

79

jogos, vitórias, empates, derrotas e saldo de gols. A Figura 8 mostra uma cena do jogo 3D

desenvolvido.

Figura 8 – Imagem do jogo 3D de uma partida em execução.

Dificuldades e limitações

Durante o processo de desenvolvimento do projeto algumas dificuldades foram

observadas. No início das atividades a falta de conhecimento para o uso do software envolvido

impediu que o trabalho fosse executado em um tempo adequado. Um exemplo envolveu o

sistema de colisão da UNITY 3D que funciona de forma correta, porém seu entendimento

demanda certo período de estudo de implementação. Esta falta de habilidade comprometeu no

início, as regras de colisão que são necessárias para uma partida ser corretamente executada.

Entre os problemas gerados houve a sobreposição de objetos e a demora na detecção da bola

pelos robôs. O código teve que ser revisado várias vezes.

Como o projeto está relacionado a um ambiente 3D e é composta por diversos modelos

tridimensionais, a falta de conhecimento em modelagem de objetos 3D foi uma grande

limitação. Para contornar esse problema foram utilizados modelos 3D públicos encontrados na

Internet, e os que não foram encontrados, como é o caso da mesa do jogo, foram criados com

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

80

uma modelagem simplificada usando a própria ferramenta de desenvolvimento da engine.

Outra limitação enfrentada foi à inclusão de sons no projeto. Neste caso não foi desenvolvido.

De forma geral, um jogo digital é composto por uma equipe multidisciplinar para seu

desenvolvimento. São programadores, designers, artistas gráficos, sonoplastas, entre outros.

Diante disso, já era esperado que as principais dificuldades encontradas no desenvolvimento

deste tipo de projeto seriam nas áreas não relacionadas diretamente com a programação.

Considerações finais

O desenvolvimento desse projeto contribui para o entendimento das fases que

compõem a construção de um game 3D hospedado na Internet. A realização do trabalho em

parceria com uma empresa proporcionou uma prática que ajudou a complementar a teoria

aprendida em sala de aula adquirida durante a graduação. Além disso, permitiu aperfeiçoar os

pontos de conhecimento técnico que ainda estavam com deficiência. É fundamental o contato

com diferentes tecnologias, pois permite trabalhos em áreas que a Universidade não consegue

abranger mesmo possuindo um curso extenso e amplo.

O projeto pode ser melhorado e dentre os requisitos adicionais para o seu

aperfeiçoamento estão à conexão com as redes sociais para o envio dos resultados de partida

(Facebook e Twitter) e a exibição do ranking de jogadores dentro da própria rede social (caso

do Facebook), além da criação de um algoritmo inteligente para o jogo com um adversário

automático. Outro ponto não contemplado foi à inclusão de sons. Como é de se esperar em um

jogo 3D, o som é fundamental para melhorar a experiência do usuário no ambiente ao qual ele

está interagindo.

Durante o desenvolvimento do jogo notou-se que seria mais atrativo aos usuários se o

jogo 3D permitisse partidas entre dois a quatro jogadores em rede. Para que o jogo contemple

essas partidas entre usuários em rede é necessário que o sistema aceite uma forma do usuário

convidar outros jogadores e aguardar até que todos aceitem o convite para iniciar a partida.

Dentro desse aspecto, o sistema deverá ser capaz de permitir que o usuário verifique a

disponibilidade dos outros jogadores em tempo real para que possa enviar convites ou reservar

um horário para iniciar a partida. Quando a partida der inicio é de se esperar que os jogadores

possam se comunicar por voz entre eles.

Rev. Bras. de Iniciação Científica (RBIC), Itapetininga, v. 5, n.1, p. 66-81, jan./mar., 2018.

81

Referências

ROBOGOL, Sobre o produto. Disponível em: http://www.robogol.com.br/sobre/ [Visitado em
maio de 2015].

UNITY 3D, Manual de Referência. Disponível em http://unity3d.com/support/
documentation/Components/index.html [Visitado em maio de 2015].

UNITY 3Da, Tutorial. Disponível em http://unity3d.com/support/resources/tutorials [Visitado
em maio de 2015].

MICROSOFT, IDE do Visual Studio para Windows. Disponível em http://www.microsoft.
com/visualstudio/pt-br/products/2010-editions [Visitado em maio de 2015].

PRESSMAN, R. S., Engenharia de Software. 5ª edição, Rio de Janeiro: Editora McGraw-Hill,
2002.

LARMAN, C., Utilizando UML e padrões – Uma introdução à análise e ao projeto orientado a
objetos e ao desenvolvimento iterativo. 3ª edição, São Paulo: Editora Bookman, 2007.

WATSON, K., Beginning C#: Programando. 1ª edição, Editora Makron Books, 2002.

GREENE, J. Use a Cabeça! C#. 1ª edição, Editora Alta Books, 2008.

FREEMAN, E. Use a Cabeça! Padrões de Projetos (Design Patterns), 1ª edição, Editora Alta
Books, 2005.

BLACKMAN, S. Beginning 3D Game Development with Unity. 1ª edição, Editora Apress,
2011.

GOLDSTONE, W. Unity Game Development Essentials. 1ª edição, Editora Packt Publishing,
2009.

WITTAYABUNDIT, J. Unity 3 Game Development. 1ª edição, Editora Editora Packt
Publishing, 2011.

