Dinâmica de duas partículas em um potencial do Tipo Calogero-Moser

Bohm e não localidade

Autores

  • Jizreel Pereira da Silva UNINTER
  • Roberta Oliveira Lenzi UNINTER
  • Carlos Henrique de Oliveira Barreto UNINTER
  • Daniel Guimarães Tedesco UNINTER

Palavras-chave:

emaranhamento; não-localidade; Broglie-Bohm; mecânica quântica.

Resumo

Este artigo explora a interpretação de De Broglie-Bohm, focando na dinâmica de duas partículas sob um potencial Calogero-Moser com o objetivo de compreender a interpretação e a não-localidade do sistema, respondendo à pergunta: como é a dinâmica desse sistema na perspectiva proposta? Utiliza-se a equação de Schrödinger com o potencial mencionado, em conjunto com o emaranhamento e os sistemas de múltiplas partículas, para criar um modelo matemático a fim de realizar a análise das trajetórias com um simulador open-source. Como resultados, tem-se uma visão geométrica e matemática do emaranhamento e a abordagem de Bohm na mecânica quântica.

Downloads

Não há dados estatísticos.

Biografia do Autor

Jizreel Pereira da Silva , UNINTER

Bacharelando em Física da UNINTER. Possui licenciatura pela UFRJ com mestradro profissional em Ensino de Física pela UNIRIO. ORCID: https://orcid.org/0000-0002-7874-1648

Roberta Oliveira Lenzi, UNINTER

Bacharelanda em Física da UNINTER, bacharela em direito pela PUC-RJ. ORCID: https://orcid.org/0009-0000-4846-8575

Carlos Henrique de Oliveira Barreto, UNINTER

Bacharelando em Física da UNINTER e bacharel em engenharia elétrica pela UNIVERSO. ORCID: https://orcid.org/0009-0005-6516-5900

Daniel Guimarães Tedesco, UNINTER

Bacharel em Fisica, Mestre em Física e Doutor em Física pela UERJ. Atualmente professor do Centro Universitário Internacional UNINTER, membro do CEP-UNINTER e do Comitê técnico Científico da Fundação Wilson Picler de Amparo a Pesquisa. ORCID: https://orcid.org/0000-0002-7874-1648

Referências

ABRAMOWITZ, M.; STEGUN, I. A. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover Publications, 1965. Disponível em: https://personal.math.ubc.ca/~cbm/aands/abramowitz_and_stegun.pdf. Acesso em: 24 out. 2024.

ASPECT, A.; DALIBARD, J.; ROGER, G. Experimental test of Bell's inequalities using time-varying analyzers. Physical Review Letters, New York, v. 49, n. 25, p. 1804-1807, 1982. DOI: https://doi.org/10.1103/PhysRevLett.49.1804. Disponível em: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.49.1804. Acesso em: 23 out. 2024.

BELL, J. S. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, New York, n. 3, p. 195-200, 1964. DOI: https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195. Disponível em: https://journals.aps.org/ppf/pdf/10.1103/PhysicsPhysiqueFizika.1.195. Acesso em: 23 ago. 2023.

BETZ, M. E. M. Elementos de mecânica quântica da partícula na interpretação da onda piloto. Revista Brasileira de Ensino de Física, São Paulo, SP, v. 36, n. 4, p. 1-14, 2014. DOI: https://doi.org/10.1590/S1806-11172014000400011. Disponível em: https://www.scielo.br/j/rbef/a/ZwJFPncfzjWscDv4yQySd4R/abstract/?lang=pt. Acesso em: 23 out. 2024.

BLOH, K. V. Nonlocality in the De Broglie-Bohm interpretation of quantum mechanics. Wolfram Demonstrations Project, Champaign, IL, 21 Mar. 2016. Disponível em: https://demonstrations.wolfram.com/NonlocalityInTheDeBroglieBohmInterpretationOfQuantumMechanic/. Acesso em: 20 out. 2024.

BOHM, D. A suggested interpretation of the quantum theory in terms of hidden variables. I. Physical Review, New York, v. 85, n. 2, p. 166-179, 1952a. DOI: https://doi.org/10.1103/PhysRev.85.166. Disponível em: https://journals.aps.org/pr/abstract/10.1103/PhysRev.85.166. Acesso em: 23 out. 2024.

BOHM, D. A suggested interpretation of the quantum theory in terms of hidden variables. II. Physical Review, New York, v. 85, n. 2, p. 180-193, 1952b. DOI: https://doi.org/10.1103/PhysRev.85.166. Disponível em: https://journals.aps.org/pr/abstract/10.1103/PhysRev.85.166. Acesso em: 23 out. 2024.

BOHM, D. Causality and chance in modern physics. Philadelphia: Routledge & Kegan Paul and D. Van Nostrand Company, 1957. Disponível em: https://www.scirp.org/reference/referencespapers?referenceid=1362682. Acesso em: 23 out. 2024.

BORN, M. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, Berlin, v. 37, n. 12, p. 863-867, 1926. DOI: http://dx.doi.org/10.1007/bf01397477. Disponível em: https://link.springer.com/article/10.1007/BF01397477. Acesso em: 23 out. 2024.

BROGLIE, L. La nouvelle dynamique des quanta. In: BROGLIE, L. Electrons et photons: rapports et discussions du cinquième conseil de physique solvay. Paris: Gauthier-Villars, 1927.

COHEN-TANNOUDJI, C.; DIU, B.; LALOË, F. Quantum mechanics: volume 1: Basic concepts, tools, and applications. 2.ed. Weinheim: Wiley-VCH, 2019.

CONTOPOULOS, G.; EFTHYMIOPOULOS, C. Ordered and Chaotic Bohmian Trajectories. Celestial Mechanics and Dynamical Astronomy, Dordrecht, v. 102, n. 1-3, p. 219-239, 2008. DOI: https://doi.org/10.1007/s10569-008-9127-8. Disponível em: https://ui.adsabs.harvard.edu/abs/2008CeMDA.102..219C/abstract. Acesso em: 23 out. 2024.

DÜRR, D.; GOLDSTEIN, S.; ZANGHÌ, N. Quantum Physics Without Quantum Philosophy. Berlin, Heidelberg: Springer-Verlag, 2013.

DÜRR, D.; GOLDSTEIN, S.; ZANGHÌ, N. Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics, New York, v. 67, n. 5-6, p. 843-907, 1992. DOI: https://doi.org/10.1007/BF01049004. Disponível em: https://link.springer.com/article/10.1007/BF01049004. Acesso em: 24 out. 2024.

EINSTEIN, A. On a heuristic point of view concerning the production and transformation of light. Annalen der Physik, Berlin, v. 17, n. 6, p. 132-148, 1905. DOI: https://doi.org/10.1002/andp.19053220607. Disponível em: https://www.scirp.org/reference/referencespapers?referenceid=2291185. Acesso em: 23 out. 2024.

EINSTEIN, A.; PODOLSKY, B.; ROSEN, N. Can quantum-mechanical description of physical reality be considered complete? Physical Review, New York, v. 47, n. 10, p. 777-780, 1935. DOI: http://dx.doi.org/10.1103/physrev.47.777. Disponível em: https://journals.aps.org/pr/abstract/10.1103/PhysRev.47.777. Acesso em: 23 out. 2024.

ELSAYED, T. A.; MØLMER, K.; MADSEN, L. B. Entangled quantum dynamics of many-body systems using Bohmian trajectories. Scientific Reports, London, v. 8, 12704, 2018. Disponível em: https://www.nature.com/articles/s41598-018-30730-0. Acesso em: 23 out. 2024.

GIUSTINA, M. Significant-loophole-free test of Bell's theorem with entangled photons. Physical Review Letters, New York, v. 115, n. 25, p. 1-7, 2015. DOI: http://dx.doi.org/10.1103/physrevlett.115.250401. Disponível em: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.250401. Acesso em: 23 out. 2024.

GUCKENHEIMER, J.; HOLMES, P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer-Verlag, 1983.

HENSEN, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, London, v. 526, n. 7575, p. 682-686, 2015. DOI: http://dx.doi.org/10.1038/nature15759. Disponível em: https://www.nature.com/articles/nature15759. Acesso em: 23 out. 2024.

HOLLAND, P. R. The quantum theory of motion: an account of the de Broglie-Bohm causal interpretation of quantum mechanics. Cambridge: Cambridge University Press, 2004.

IVANOV, I.; NAM, C. H.; KIM, K. T. Quantum chaos in strong field ionization of hydrogen. Journal of Physics B: Atomic Molecular and Optical Physics, Bristol, v. 52, n. 22, 2019. DOI: 10.1088/1361-6455/ab46f1. Disponível em: https://ui.adsabs.harvard.edu/abs/2019JPhB...52v5002I/abstract. Acesso em: 24 out. 2024.

LICHTENBERG, A. J.; LIEBERMAN, M. A. Regular and chaotic dynamics. New York: Springer-Verlag, 1992.

NEWTON, I. Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light. London: Sam. Smith and Benj. Walford, 1704.

OTT, E. Chaos in dynamical systems. Cambridge: Cambridge University Press, 2002.

PINTO NETO, N. Teoria da interpretação da mecânica quântica. São Paulo: Livraria da Física, 2011.

PIZA, A. F. R. T. Sistemas quânticos compostos e emaranhamento, sistemas quânticos abertos e decoerência. São Paulo: Instituto de Física da USP, 2009. Notas de aula.

POLCHINSKI, J. String theory. Cambridge: Cambridge University Press, 1998. (Cambridge Monographs on Mathematical Physics).

RAFSANJANI, A. A. et al. Non-local temporal interference. Scientific Reports, London, v. 14, p. 1-16, 2024. DOI: http://dx.doi.org/10.1038/s41598-024-54018-8. Disponível em: https://www.nature.com/articles/s41598-024-54018-8. Acesso em: 24 out. 2024.

ROWE, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature, London, v. 409, n. 6822, p. 791-794, 2001. DOI: http://dx.doi.org/10.1038/35057215. Disponível em: https://www.nature.com/articles/35057215. Acesso em: 23 out. 2024.

SCHLOSSHAUER, M. Decoherence and the quantum-to-classical transition. Berlin: Springer-Verlag, 2007.

SCHRÖDINGER, E. Collected papers on wave mechanics: together with his four lectures on wave mechanics. New York: Chelsea Publishing Company, 1982.

SIQUEIRA-BATISTA, R.; HELAYËL-NETO, J. A. A mecânica quântica de David Bohm. Vértices, Rio de Janeiro, v. 10, n. 3, p. 57-62, 2008. DOI: https://doi.org/10.5935/1809-2667.20080005. Disponível em: https://editoraessentia.iff.edu.br/index.php/vertices/article/view/1809-2667.20080005. Acesso em: 23 out. 2024.

SUN, Q.; ZUBAIRY, M. S. Entanglement criteria for continuous-variable systems. Classical, Semi-Classical and Quantum Noise, New York, p. 249-258, 2011. DOI: http://dx.doi.org/10.1007/978-1-4419-6624-7_17. Disponível em: https://link.springer.com/chapter/10.1007/978-1-4419-6624-7_17. Acesso em: 23 out. 2024.

TZEMOS, A. C.; CONTOPOULOS, G. Critical points and trajectories of the Bohmian quantum flow. Maple Transactions, Toronto, v. 3, n. 2, 2023. Disponível em: https://mapletransactions.org/index.php/maple/article/view/15546. Acesso em: 24 out. 2024.

TZEMOS, A. C.; CONTOPOULOS, G. Chaos and ergodicity in an entangled two-qubit Bohmian system. Physica Scripta, Bristol, v. 95, n. 6, p. 1-19, 2020. DOI: https://doi.org/10.48550/arXiv.2003.03989. Disponível em: https://arxiv.org/abs/2003.03989. Acesso em: 24 out. 2024.

TZEMOS, A. C.; CONTOPOULOS, G. The role of chaotic and ordered trajectories in establishing Born's rule. Physica Scripta, Bristol, v. 96, n. 6, 2021. Disponível em: https://arxiv.org/abs/2111.00846. Acesso em: 24 out. 2024.

TZEMOS, A. C.; CONTOPOULOS, G.; EFTHYMIOPOULOS, C. Bohmian trajectories in an entangled two-qubit system. Physica Scripta, Bristol, 2019. DOI: https://doi.org/10.48550/arXiv.1905.12619. Disponível em: https://arxiv.org/abs/1905.12619. Acesso em: 24 out. 2024.

TZEMOS, A. C.; CONTOPOULOS, G.; EFTHYMIOPOULOS, C. Origin of chaos in 3-D Bohmian trajectories. Physics Letters A, Amsterdam, 2016. DOI: https://doi.org/10.48550/arXiv.1609.07069. Disponível em: https://arxiv.org/abs/1609.07069. Acesso em: 24 out. 2024.

WISNIACKI, D. A.; PUJALS, E. R. Motion of vortices implies chaos in Bohmian mechanics. EPL (Europhysics Letters), Bristol, v. 71, n. 159, 2005. DOI: https://doi.org/10.48550/arXiv.quant-ph/0502108. Disponível em: https://arxiv.org/abs/quant-ph/0502108. Acesso em: 24 out. 2024.

WOLFRAM. Wolfram Demonstrations Project: visualizações interativas para a área de desktop, 2023. Disponível em: https://demonstrations.wolfram.com/. Acesso em: 11 set. 2023.

YOUNG, T. I. The Bakerian lecture: experiments and calculations relative to physical optics. Philosophical Transactions, London, v. 94, p. 1-16, 1804. DOI: http://dx.doi.org/10.1098/rstl.1804.0001. Disponível em: https://royalsocietypublishing.org/doi/10.1098/rstl.1804.0001. Acesso em: 23 out. 2024.

Downloads

Publicado

2024-11-14

Como Citar

Pereira da Silva , J., Oliveira Lenzi, R., de Oliveira Barreto, C. H., & Guimarães Tedesco, D. (2024). Dinâmica de duas partículas em um potencial do Tipo Calogero-Moser: Bohm e não localidade. Revista Brasileira De Iniciação Científica, e024047. Recuperado de https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/1271