Simulação de órbita e atitude de um nanossatélite para análise dos movimentos de atitude sob efeito de forças de perturbação
Palavras-chave:
Movimento orbital, Nanossatélite, Órbita Terrestre Baixa, Simulação OrbitalResumo
Este trabalho descreve a construção da simulação da trajetória em órbita de baixa altitude (LEO) de um nanossatélite bem como sua atitude sob efeito das forças de perturbação mais significativas. Todo ambiente de simulação foi implementado em Matlab/Simulink. A trajetória orbital foi elaborada utilizando equações clássicas sem considerar derivas. Para a atitude foram incluídos os torques de distúrbio devido ao gradiente de gravidade, ao campo geomagnético, à força de arrasto atmosférico residual e à pressão solar. Os resultados mostraram um bom ambiente para estudo da atitude em LEO o que permitirá análise de futuros sistemas de determinação e controle de atitude.
Downloads
Referências
BATISTA, D. S. Plataforma de Simulação HiL contendo uma Bobina de Helmholtz e aplicada a Sistemas Aeroespaciais. 2016. 268f. Dissertação (Mestrado em Engenharia Elétrica). Departamento de Engenharia Elétrica, Universidade Estadual de Londrina, 2016.
BATISTA, D. S.; GRANZIERA, F.; TOSIN, M. C.; MELO, L. F. Three-Axial Helmholtz Coil Design and Validation for Aerospace Applications. IEEE Transactions on Aerospace and Electronic Systems, v. 54, n. 1, p. 392–403, 2018.
BREWER, M. R. CubeSat Attitude Determination and Helmholtz Cage Design. 2012. Thesis (Master’s in Aeronautical Engineering). Department of Aeronautics and Astronautics Graduate, Air Force Institute of Technology, 2012.
ESCOBAL, P. R. Method of Orbit Determination. 2.ed. Krieger Publishing Company. 1976.
HADDOX, P. G. The Development of a Hardware-in-the-Loop Attitude Determination and Control Simulator for IlliniSat-2. In: 52nd Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 2014. Disponível em: https://doi.org/10.2514/6.2014-0007. Acesso em: 06 jul. 2023.
JAMBERSI, A. B.; & SILVA, S. (2016). A Sutileza dos Quatérnions no Movimento de Rotação de Corpos Rígidos. Revista Brasileira de Ensino de Física, 38 (2), e2313. Disponível em: https://doi.org/10.1590/1806-9126-RBEF-2016-0015 Acesso em: 30 jun. 2023.
KLESH, A.; et al. Dynamically Driven Helmholtz Cage for Experimental Magnetic Attitude Determination. Advances in Austronautical Sciences, v. 135, p. 1–14, 2009.
KUGA, H. K.; CARRARA, V.; RAO, K. R. Introdução à Mecânica Orbital. 2.ed. Instituto Nacional de Pesquisas Espaciais, 2012.
KUIPERS, J. B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality. Princeton University Press, 2002.
KULU, E. Nanosatellite Launch Forecasts - Track Record and Latest Prediction. In: Proceedings of the Small Satellite Conference, Swifty Session 1, 2022. Disponível em: https://digitalcommons.usu.edu/smallsat/2022/all2022/7/. Acesso em: 05 jun 2023.
MARKLEY, F. L.; CRASSIDIS, J. L. Fundamentals of Spacecraft Attitude Determination and Control. Springer New York, 2014.
MATHWORKS. Rapid Prototyping and Real-Time Simulation. 2023. Disponível em: https://www.mathworks.com/help/rtw/rapid-prototyping-deployment.html. Acesso em: 25 jun. 2023.
MENEGALDO, C. G. Simulador de controle de atitude e propagação de órbita aplicado a nanossatélites em órbita baixa terrestre: desenvolvimento e validação com dados de voo do nanossatélite PicSat. Dissertação (Mestrado) – Universidade de São Paulo, 2020.
NOOMEN, R. Flight and Orbital Mechanics. Technical University of Delft. 2012. Notas de Aula. Disponível em: Disponível em: https://ocw.tudelft.nl/wp-content/uploads/AE2104-Orbital-Mechanics-Slides_10.pdf. Acesso em: 29 abr. 2023.
PIERGENTILI, F.; CANDINI, G. P.; ZANNONI, M. Design, Manufacturing, and Test of a Real-Time, Three-Axis Magnetic Field Simulator. IEEE Transactions on Aerospace and Electronic Systems, v. 47, n. 2, p. 1369–1379, 2011.
POLAT, H. C.; VIRGILI-LLOP, J.; ROMANO, M. Survey, statistical analysis and classification of launched CubeSat missions with emphasis on the attitude control method. Journal of Small Satellites, v. 5, n. 3, p. 513-530, 2016.
POPPENK, F. M.; AMINI, R.; BROUWER, G. F. Design and Application of a Helmholtz Cage For Testing Nano-Satellites. In: 6th International Symposium on Environmental Testing for Space Programmes, 2007, Noordwijk. ESA/ESTEC, 200
ROBSON, C. R. J. The Design and Validation of a Spacecraft Orbit and Attitude Determination Environment in MATLAB/Simulink. 2018. 176p. Thesis (Master of Science in Mechanical Engineering) - University of Alberta, 2018.
SIDI, M. J. Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, Cambridge Aerospace Series, No. 7, 2000.
SILVA, R. C.; ISHIOKA, I. S. K.; CAPPELLETTI, C.; BATTISTINI, S.; BORGES, R. A. Helmholtz Cage Design and Validation for Nanosatellites HWIL Testing. IEEE Transactions on Aerospace and Electronic Systems, v. 55, n. 6, p. 3050–3061, 2019.
WERTZ, J. R. Spacecraft Attitude Determination and Control (1978th ed.). D. Reidel Publishing Company, 1978.
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Brasileira de Iniciação Científica
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.