Evaluation of phosphorus removal using biosorbent producced from baru pulp (dipteryx alata)

Authors

  • João Marcos Volpato Arantes Universidade Federal de Goiás - UFG
  • Luanna Goias Federal University
  • Renata Medici Frayne Cuba Universidade Federal de Goiás - UFG

Keywords:

Adsorption, Eutrophication, Phosphate, Water treatment

Abstract

The presence of nutrients in reservoirs is a concern faced today. This study aimed to remove phosphorus using baru pulp. Influence assays of biosorbent mass, pH, adsorption capacity and velocity and identification of functional groups were performed. The pH 7.0 and dosage of 0.1g/50mL were determined for adsorption. Adsorption occurred in 5 min and the maximum adsorption capacity calculated was 132.62 mg.g-1 involving a complex mechanism with predominance of hydrogen bonds between acidic species of P-PO43- and hydroxyl groups present on the surface of the biosorbent

Downloads

Download data is not yet available.

Author Biographies

João Marcos Volpato Arantes, Universidade Federal de Goiás - UFG

João Marcos Volpato Arantes joined academic life in 2018, in the career of Environmental and Sanitary Engineering at the Federal University of Goiás. In 2020 he participated in the Institutional Program for Scholarships for Scientific Initiation (PIBIC) and in 2023 he defended his course conclusion work, both in the area of ​​water treatment.

Luanna, Goias Federal University

Engenheira Ambiental e Sanitarista (UFG). Mestranda em Engenharia Ambiental e Sanitária (UFG). ORCID https://orcid.org/0000-0003-4959-6645

Renata Medici Frayne Cuba, Universidade Federal de Goiás - UFG

Dra. em Hidráulica e Saneamento (USP). ORCID. https://orcid.org/0000-0002-3455-8198.  

References

ABDELHAY, A.; AL BSOUL, A.; AL-OTHMAN, A.; AL-ANANZEH, N. M; JUM'H, I.; AL-TAANI, A. A Kinetic and thermodynamic study of phosphate removal from water by adsorption onto (Arundo donax) reeds. Adsorption Science & Technology, v.36, n.1-2, p.46-61, 2018. https://doi-org.ez49.periodicos.capes.gov.br/10.1177/02636174166843

AKRAM, M.; XU, X.; GAO, B.; WANG, S.; KHAN, R.; YUE, Q.; DUAN, P.; DAN, H.; PAN, J. Highly efficient removal of phosphate from aqueous media by pomegranate peel co-doping with ferric chloride and lanthanum hydroxide nanoparticles. Journal of Cleaner Production, v. 292, p.125311, 2021. https://doi.org/10.1016/j.jclepro.2020.125311.

APHA – AMERICAN PUBLIC HEALTH ASSOCIATION. Standard methods for examination of water and wastewater. 23 Ed. Washington, DC, USA. 2017.

BOTEZELLI, L.; DAVIDE, A. C.; MALAVASI, M. M. Características dos frutos e sementes de quatro procedências de dipteryx alata vogel (baru). CERNE, v. 6, n. 1, p. 9-18, 2000. https://biblat.unam.mx/hevila/Cerne/2000/vol6/no1/2.pdf

BRASIL. Conselho Nacional de Meio Ambiente. Resolução CONAMA nº 357, de 17 de março de 2005. Diário Oficial da União, Brasília, DF, 18 março 2005, p. 58.

CAO, H.; WU, X.; SYED-HASSAN, S. S. A.; ZHANG, S.; MOOD, S. H.; MILAN, Y. J.; GARCIA-PEREZ, M. Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell. Bioresource Technology, v.318, p.124063-124063, 2020. https://doi.org/10.1016/j.biortech.2020.124063.

CHUBAR, N.I.; KANIBOLOTSKYY, V.A.; STRELKO, V.V.; GALLIOS, G.G.; SAMANIDOU, V.F.; SHAPOSHNIKOVA, T.O.; MILGRANDT, V.G.; ZHURAVLEV, I. Z. Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, v. 255, n. 1, p.55-63, 2005. https://doi.org/10.1016/j.colsurfa.2004.12.015

CHUNHUI, L.; JIN, T.; PULI, Z.; BIN, Z.; DUO, B.; XUEBIN, L. Simultaneous removal of fluoride and arsenic in geothermal water in Tibet using modified yak dung biochar as an adsorbent. Royal Society Open Science, v. 5, n. 11, p. 181266-181266, 2018. https://doi-org.ez49.periodicos.capes.gov.br/10.1098/rsos.181266

FITO, J.; SAID, H.; FELEKE, S.; WORKU, A. Fluoride removal from aqueous solution onto activated carbon of catha edulis through the adsorption treatment technology. Environmental Systems Research, v. 8, n. 25, p. 1-10, 2019. https://doi-org.ez49.periodicos.capes.gov.br/10.1186/s40068-019-0153-1

FREITAS, F. B. A. de; CÂMARA, M. Y. F.; FREIRE, M. D. F. Determinação do PCZ de adsorventes naturais utilizados na remoção de contaminantes em soluções aquosas. In. 5º Encontro Regional de Química e 4º Encontro Nacional de Química. Mossoró, Rio Grande do Norte, 2015, p. 610-618. https://www.proceedings.blucher.com.br/article-details/determinao-do-pcz-de-adsorventes-naturais-utilizados-na-remoo-de-contaminantes-em-solues-aquosas-22117

GALVAN, K. A.; MEDEIROS, R. C.; MARTINS NETO, R. P.; LIBERALESSO, T.; GOLOMBIESKI, J. I.; ZANELLA, R. Análise ambiental macroscópica e a qualidade da água de nascentes na bacia do Rio São Domingos/SC, Brasil. Revista Ibero-Americana de Ciências Ambientais. v.11, n.1, p.165 – 176. https://doi.org/10.6008/CBPC2179-6858.2020.001.0016

GERHARDT, T.E.; SILVEIRA, D.T. Métodos de Pesquisa. 1a ed. Editora Universidade Federal do Rio Grande do Sul, 2009.

GIACOMNI, F., MENEGAZZO, M. A. B., SILVA, M. G. da, SILVA, A. B. da, BARRO, M. A. S. D. de. Importância da Determinação do Ponto de Carga Zero como Característica de Tingimento de Fibras Proteicas. Revista Matéria, Rio de Janeiro, v. 22, n. 2, 2017. https://doi.org/10.1590/S1517-707620170002.0159

HE, J.; XU, Y.; WANG, W.; HU, B.; WANG, Z.; YANG, X.; WANG, Y.; YANG, L. Ce(III) nanocomposites by partial thermal decomposition of Ce-MOF for effective phosphate adsorption in a wide pH range. Chemical engineering journal (Lausanne, Switzerland : 1996), v.379, p.122431, 2020. https://doi.org/10.1016/j.cej.2019.122431

HE, Y.; WU, P.; XIAO, W.; LI, G.; YI, J.; HE, Y.; CHEN, C.; DING, P.; DUAN, Y. BHATNAGAR, A. Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: Adsorption kinetics and mechanisms. PloS one, v.14, n. 3, p.e0213377, 2019. https://doi.org/10.1371/journal.pone.0213377

HEIER, D.; BLACKSTOCK, T.; STACK, K.; RICHARDSON, D.; LEWIS, T. Adsorption of wood extractives and model compounds onto bentonite. Physicochemical and Engineering Aspects, v. 482, p. 213-221, 2015. https://doi.org/10.1016/j.colsurfa.2015.05.018

HUANG, M.; LUO, J.; FANG, Z.; LI, H. Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Applied Catalysis B: Environmental, v. 190, p. 103-114, 2016. https://doi.org/10.1016/j.apcatb.2016.02.069

KOBYA, M.; OMWENE, P. I.; SARABI, S. M.; YILDIRIM, S.; UKUNDIMANA, Z. Phosphorous removal from anaerobically digested municipal sludge centrate by an electrocoagulation reactor using metal (Al, Fe and Al-Fe) scrap anodes. Process Safety and Environmental Protection, v.152, p.188-200, 2021. https://doi.org/10.1016/j.psep.2021.06.003

KUMAR, P.; PRAJAPATI, A. K.; DIXIT, S.; YADAV, V. L. Adsorption of fluoride from aqueous solution using biochar prepared from waste peanut hull. Materials Research Express, v. 6, n. 12, p. 125553, 2019. https://doi.org/10.1088/2053-1591/ab6ca0

LI, R.; WANG, J. J.; ZHOU, B.; AWASTHI, M. K.; ALI, A.; ZHANG, Z.; GASTON, L. A.; LAHORI, A. H.; MAHAR, A. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. The Science of the Total Environment, v.559, p.121-129, 2016. https://doi.org/10.1016/j.scitotenv.2016.03.151

LIU, B.; YU, Y.; HAN, Q.; LOU, S.; ZHANG, L.; ZHANG, W. Fast and efficient phosphate removal on lanthanum-chitosan composite synthesized by controlling the amount of cross-linking agent. International Journal of Biological Macromolecules, v.157, p.247-258, 2020. https://doi.org/10.1016/j.ijbiomac.2020.04.159

LIU, X.; ZHANG, L. Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies. Powder technology, v.277, p.112-119, 2015. https://doi.org/10.1016/j.powtec.2015.02.055

LIU, X.; ZHOU, W.; FENG, L.; WU, L.; LV, J.; DU, W. Characteristics and mechanisms of phosphorous adsorption by peanut shell-derived biochar modified with magnesium chloride by ultrasonic-assisted impregnation. ACS omega, v.7, n. 47, p.43102-43110, 2022. https://doi-org.ez49.periodicos.capes.gov.br/10.1021/acsomega.2c05474

LÓPEZ, J.; REIG, M.; LICON, E.; VALDERRAMA, C.; GIBERT, O.; CORTINA, J.L. Evaluating the integration of nanofiltration membranes in advanced water reclamation schemes using synthetic solutions: From phosphorous removal to phosphorous circularity. Separation and Purification Technology, v.290, p.120914, 2022. https://doi.org/10.1016/j.seppur.2022.120914

MACHADO, S. M.; FIDELIS, A. C. F.; CARRARO, I. R.; OLEA, P. M. PESQUISA CIENTÍFICA: Conhecimento e percepção dos acadêmicos de administração em Caxias do Sul. Tecnologias para Competitividade Industrial, v. 9, n. 2, 2016. file:///C:/Users/Francisco/Downloads/787-Texto%20do%20artigo-2414-2627-10-20161212.pdf

MANNA, A.; NASKAR, N.; SEN, K.; BANERJEE, K. A review on adsorption mediated phosphate removal and recovery by biomatrices. Journal of the Indian Chemical Society, v.99, n.10, p.100682, 2022. https://doi.org/10.1016/j.jics.2022.100682.

MARCONI, M. ANDRADE de; LAKATOS, E.M. Fundamentos de Metodologia Cientifica. 5ª ed. Editora Atlas S.A., 2003. https://docente.ifrn.edu.br/olivianeta/disciplinas/copy_of_historia-i/historia-ii/china-e-india

MESBAH, M.; HAMEDSHAHRAKI, S.; AHMADI, S.; SHARIFI, M.; IGWEGBE, C. A. Hydrothermal synthesis of LaFeO3 nanoparticles adsorbent: Characterization and application of error functions for adsorption of fluoride. MethodsX, v.7, p.100786, 2020. https://doi.org/10.1016/j.mex.2020.100786

MOSQUETTA, R.; RIBEIRO, G. C.; MUNOZ, R. A. A.; COELHO, N. M. M.; COELHO, L. M. Uso de amêndoas de baru (Dypterix alata) para remoção de Ni (II) em etanol combustível. Química Nova, v. 34, n. 6, 2011, p. 923-927. https://doi.org/10.1590/S0100-40422011000600002

MUHAISEN, L.F. Lemon peel as natural biosorbent to remove phosphate from simulated wastewater. Journal of Engineering and Sustainable Development, v.20, n. 2, 2016. https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/672/540

NEMET, Y. K. S.; NEMET, F. E.; GREGÓRIO, S. R.; RAMBO, M. K. D. Obtenção de biocarvões ativados a partir de resíduos de baru (Dipteryx alata Vog) e sua aplicação como adsorventes. Revista Desafios, v. 8, n. 01, 2021. http://dx.doi.org/10.20873/uftv8-9984

PAUL, P.; PARBAT, S.; ADITYA, G. Phosphate ion removal from aqueous solution using snail shell dust: biosorption potential of waste shells of edible snails. RSC Advances, v.12, n. 46, p.311-323, 2022. https://doi-org.ez49.periodicos.capes.gov.br/10.1039/D2RA03852H

PINTO, F., ANTUNES, S.C. Biomanipulação para o controlo da eutrofização, Revista Ciência Elementar, v.8, n. 1, 2020. http://doi.org/10.24927/rce2020.010

QUEVEDO, C. M. G. de; PIVELI, R. P.; PAGANINI, W. S. A contribuição das frações de fósforo nos esgotos sanitários. 2017 In. 29° Congresso Brasileiro de Engenharia Ambiental e Sanitária, da ABES, e 28° Encontro Técnico AESaesp e a 28ª Feira Nacional de Saneamento e Meio Ambiente – FENASAN. 2017. Anais do 29° Congresso Brasileiro de Engenharia Ambiental e Sanitária, da ABES, e 28° Encontro Técnico AESaesp e a 28ª Feira Nacional de Saneamento e Meio Ambiente – FENASAN. São Paulo: ABES, 2017. Disponível em: http://www.evolvedoc.com.br/aesabesp/detalhes-2643_a-contribuicao-das-fracoes-de-fosforo-nos-esgotos-sanitarios. Acesso em: 30 jan. 2023.

RATHOD, M.; MODY, K.; BASHA, S. Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii. Journal of Cleaner Production, v.84, p.484-493, 2014. https://doi.org/10.1016/j.jclepro.2014.03.064

ROCHA, L. S.; SANTIAGO, R. A. C. de. Implicações nutricionais e sensoriais da polpa e casca de baru (Dipterix Alata vog.) na elaboração de pães. Ciência e Tecnologia de Alimentos, v. 29, n. 4, p.820-825, out.-dez. 2009. https://doi.org/10.1590/S0101-20612009000400019

SIMIONATTO, H.H.; CARVALHO, S.L. Análise das concentrações de nitrogênio, fósforo e sólidos totais presentes na água do Córrego do Galante – SP. Revista de Tecnologia & Gestão Sustentável. V 1, n. 2, 2022. https://publicacoes.amigosdanatureza.org.br/index.php/rtgs/issue/view/280

SILVA JUNIOR, O. P., CARVALHO, S. L., AMÉRICO-PINHEIRO, J. H. P. Avaliação das concentrações de nitrogênio e fósforo na água do Córrego das Marrecas, município de Dracena – SP Revista Cientifica, v.10, n.19, p. 37-44, 2017. https://publicacoes.amigosdanatureza.org.br/index.php/anap_brasil/issue/view/156

TAUFER, G.; MÜLLER, C. S.; HILGEMANN, M. Remoção de fósforo e nitrogênio em efluente de indústria de laticínios por eletrocoagulação. Scientia Plena, v.12, n. 9, 2016. https://doi.org/10.14808/sci.plena.2016.097202

TRAN, H. N.; YOU, S.; HOSSEINI-BANDEGHARAEI, A.; CHAO, H. Mistakes and inconsistencies regarding adsorption of contaminants. Water Research, v. 120, p. 88-116, 2017. https://doi.org/10.1016/j.watres.2017.04.014

TOMUL, F.; ARSLAN, Y.; KABAK, B.; TRAK, D.; TRAN, H. N. Adsorption process of naproxen onto peanut shell‐derived biosorbent: important role of n–π interaction and van der Waals force. Journal of Chemical Technology and Biotechnology (1986), v.96, n. 4, p.869-880, 2021. https://doi-org.ez49.periodicos.capes.gov.br/10.1002/jctb.6613

VERMA, V.; SOTI, A.; KULSHRESHTHA, N. M.; RAMPURIA, A.; BRIGHU, U.; GUPTA, A. B. Strategies for enhancing phosphorous removal in vertical flow constructed wetlands. Journal of Environmental Management, v. 317, p.115406-115406, 2022. https://doi.org/10.1016/j.jenvman.2022.115406.

ZHANG, G.; LIU, H.; LIU, R.; QU, J. Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. Journal of Colloid and Interface Science, v.335, n.2, p.168-174, 2009. https://doi.org/10.1016/j.jcis.2009.03.019

ZHANG, L.; MENG, F.; SONG, W.; REN, X.; WANG, J.; CAI, X.; LI, X.; LI, Y.; YAN, L. Enhanced selective removal of phosphate in the presence of high-strength nitrate using straw-based anion imprinted biosorbent. Journal of Environmental Chemical Engineering, v.10, n. 3, p.108060, 2022. https://doi.org/10.1016/j.jece.2022.108060

ZONG, E.; LIU, X.; JIANG, J.; FU, S.; CHU, F. Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution. Applied Surface Science, v.387, p.419-430, 2016. https://doi.org/10.1016/j.apsusc.2016.06.107

ZHU, N.; YAN, T.; QIAO, J.; CAO, H. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere (Oxford), v. 164, p.32-40, 2016. https://doi.org/10.1016/j.chemosphere.2016.08.036

Published

2023-09-13

How to Cite

Volpato Arantes, J. M., Guimarães , L. G., & Medici Frayne Cuba, R. (2023). Evaluation of phosphorus removal using biosorbent producced from baru pulp (dipteryx alata). Revista Brasileira De Iniciação Científica, 10, e023028. Retrieved from https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/1061