Studies of the implications of the Bayes Theorem in natural computing
Keywords:
Bayes' Theorem.Machine Learning.Classify. Artificial Neural Networks.Abstract
Machine Learning is a branch of Artificial Intelligence, that the main objective is to develop system that learning automatically for to be applied on the classify problems. For this, this area requires mathematical and statistics knowledge. This article present results of two machine learning technical studies, Naive Bayes and
Artificial Neural Network (ANN), exposing a biblical survey about each technical and tests with the algorithm Naive Bayes for language text classify and with a ANN trained with data of optimization algorithm.
Downloads
References
ARA-SOUZA, Anderson Luiz. REDES BAYESIANAS: UMA INTRODUÇÃO APLICADA A CREDIT SCORING. São Carlos, 2010.
BARCA, Maria Carolina Stockler; SILVEIRA, Tiago Redondo de Siqueira; MAGINI, Marcio. Treinamento de redes neurais artificiais: o algoritmo Backpropagation. IX Encontro Latino Americano de Iniciação Científica, V Encontro Latino Americano de Pós-Graduação–Universidade do Vale do Paraíba, Anais. Jacareí, 2005.
BRIANEZE, Juliano Rodrigues; DA SILVA SANTOS, Carlos Henrique; HERNANDEZ-FIGUEROA, Hugo Enrique. Evolutionary algorithms applied to microstrip antennas design. 2007.
BRIANEZE, Juliano Rodrigues; DA SILVA-SANTOS, Carlos Henrique; HERNÁNDEZ-FIGUEROA, Hugo Enrique. Multiobjective evolutionary algorithms applied to microstrip antennas design. Ingeniare. Revista chilena de ingeniería, v. 17, n. 3, p. 288-298, 2009.
FERRAZ JR., Wilton Moreira; SILVA-SANTOS, Carlos Henrique; GONÇALVES, Marcos Sérgio, Filtros ópticos otimizados por algoritmos genéticos associados à lógica nebulosa, XIII Encontro Acadêmico de Modelagem Computacional Laboratório Nacional de Computação Científica – LNCC/MCTIC (EAMC-2020), Petrópolis-RJ, 2020, Disponível em: <http://www.eamc.lncc.br/PastEditions/Proceedings/Proceedings_EAMC2020.pdf>, Acessado em: 07 de Maio de 2020.
FERREIRA, Adriano da Silva et al. Towards an integrated evolutionary strategy and artificial neural network computational tool for designing photonic coupler devices. Applied Soft Computing, v. 65, p. 1-11, 2018.
NAIVE Bayes Classifier for PHP. Disponível em: https://github.com/uhho/PHPNaiveBayesClassifier. Acesso em: 14 ago. 2018.
MILLÁN, Eva; LOBODA, Tomasz; PÉREZ-DE-LA-CRUZ, Jose Luis. Bayesian networks for student model engineering. Computers & Education, v. 55, n. 4, p. 1663-1683, 2010.
MONARD, Maria Carolina; BARANAUSKAS, José Augusto. Conceitos sobre aprendizado de máquina. Sistemas inteligentes-Fundamentos e aplicações, v. 1, n. 1, p. 32, 2003.
PARDO, Thiago Alexandre Salgueiro; NUNES, Maria das Graças Volpe. Aprendizado Bayesiano Aplicado ao Processamento de Línguas Naturais. Série de Relatórios Técnicos do Instituto de Ciências Matemáticas e de Computação-ICMC, Universidade de São Paulo, n. 180, 2002.
PENA, Sérgio Danilo. Thomas Bayes O "cara"! Ciência Hoje, Minas Gerais, v. 38, p.24-29, jun. 2006
POLASTRO, Rodrigo Bellizia. Lógica Probabilística Baseada em Redes Bayesianas Relacionais com inferência em Primeira Ordem. 2012. 105 f. Tese (Doutorado) - Curso de Engenharia Mecânica, Escola Politécnica da Universidade de São Paulo, São Paulo, 2012.
SANTANA, Alan Felipe. TREINAMENTO DE REDES NEURAIS ARTIFICIAIS UTILIZANDO ALGORITMOS GENÉTICOS EM PLATAFORMA DISTRIBUÍDA. 2012. 123 f. Monografia (Especialização) - Curso de Sistemas de Informação, Universidade Federal de Lavras, Lavras, 2012.
SANTOS, Carlos Henrique da Silva et al. Computação bio-inspirada e paralela para a análise de estruturas metamateriais em microondas e fotônica. 2010.
SANTOS, Edimilson Batista dos. A Ordenação das Variáveis no Processo de Otimização de Classificadores Bayesianos: Uma Abordagem Evolutiva. 2007. 114 f. Dissertação (Mestrado) - Curso de Ciência da Computação A, Universidade Federal de São Carlos, São Carlos, 2007.
SEFFRIN, Henrique M.; RUBI, Geiseane; JAQUES, Patricia. Uma Rede Bayesiana aplicada aModelagem do Conhecimento Alg ́ ebrico do Aprendiz. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE). 2013. p. 597.
SILVA-SANTOS, C. H. et al. Purification of naphthalene by zone refining: Mathematical modelling and optimization by swarm intelligence-based techniques. Separation and Purification Technology, v. 234, p. 116089, 2020.
SILVA, Denis Tavares da; SILVA-SANTOS, Carlos Henrique. Controlando população inicial de algoritmos genéticos para a otimização de funções. Revista Brasileira de Iniciação Científica, v. 6, n. 2, p. 68-91, 2019.
SILVA, Juliana Mendes N. Redes Neurais Artificiais: Rede Hopfield e Redes Estocásticas. 2003.
SOUZA, Marcos Castro de. Python - Implementação da rede neural Perceptron. Disponível em: <https://gist.github.com/marcoscastro/491bd5837815fe11181dce6c50f457ee>. Acesso em: 30 ago. 2018.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Brasileira de Iniciação Científica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.