Impactos del uso de la propulsión eléctrica en aeronaves pequeñas
Palabras clave:
Aeronaves eléctricas, Motores, Baterías, Aeronaves pequeñasResumen
Hace años se investigan nuevos modelos de generación de energía como alternativas sostenibles a los combustibles fósiles, incluida la motorización eléctrica. Esta investigación, de carácter cualitativo, busca verificar el impacto del cambio del sistema propulsor en el projecto estructural de pequeñas aeronaves y dilucidar las dificultades en su electrificación. Por un estudio de caso en el que se utilizaron dos modelos de avión con diferentes sistemas de propulsión, se investigaron los cambios necesarios en la configuración del avión para una electrificación total y los efectos sobre las cargas soportadas sobre su rendimiento. Se concluyó que, para lograr la electrificación completa de los aviones, aún quedan muchos avances por hacer.
Descargas
Citas
AEROEXPO ONLINE. Disponível em: https://pdf.aeroexpo.online/pt/pdf-en/pipistrel-doo/alpha/171425-259-_3.html. Acesso em: 20 mai 2023.
AIRBUS GROUP; ROLLS-ROYCE. E-Thrust. Brochure, 2012 Disponível em: http://company.airbus.com/service/mediacenter/download/?uuid=64ea2c23-91b1-4787-9d1d5b22b7d716b9. Acesso em: 25 set. 2022.
AMOOZGAR, M.; FRISWELL, M.I.; FAZELZAGEH, S.A.; HADDAD KHODAPARAST, H.; MAZIDI, A.; COOPER, J.E. Aeroelastic Stability Analysis of Electric Aircraft Wings with Distributed Electric Propulsors. Aerospace, 2021, 8, 100. https://doi.org/10.3390/aerospace8040100.
ANIBAL, J.; MADER, C.; MARTINS, J. Aerodynamic shape optimization of an electric aircraft motor surface heat exchanger with conjugate heat transfer constraint. International Journal of Heat and Mass Transfer, v. 189, p. 122689, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122689.
BERG, F.; PALMER, J.; MILLER, P.; DODDS, G. HTS system and component targets for a distributed aircraft propulsion system. IEEE Trans. Appl. Supercond., v. 27, n. 4, 2017. DOI: 10.1109/TASC.2017.2652319.
BERG, F.; PALMER, J.; MILLER, P.; HUSBAND, M.; DODDS, G. HTS electrical system for a distributed propulsion aircraft. IEEE Trans. Appl. Supercond., v. 25, n. 3, 2014. DOI: 10.1109/TASC.2014.2384731.
BERG, F.; PALMER, J.; BERTOLA, L.; MILLER, P.; DODDS, G. Cryogenic system options for a superconducting aircraft propulsion system. IOP Conference Series: Materials Science and Engineering, v. 101, n. 1, 2015. DOI: 10.1088/1757-899X/101/1/012085.
BORER, N.K.; PATTERSON, M.D.; VIKEN, J.K.; MOORE, M.D.; BEVIRT, J.; STOLL, A.M.; GIBSON, A.R. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator. In: 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, 2016. DOI: https://doi.org/10.2514/6.2016-3920.
BORGHEI, M.; GHASSEMI, M. Insulation Materials and Systems for More- and All-Electric Aircraft: A Review Identifying Challenges and Future Research Needs. IEEE Transactions on Transportation Electrification, v. 7, n. 3, p. 1930-1953, Sept. 2021. DOI: 10.1109/TTE.2021.3050269.
BRELJE, B.J.; MARTINS, J.R.R.A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Progress in Aerospace Sciences, v. 104, p. 1-19, 2019. ISSN 0376-0421. DOI: https://doi.org/10.1016/j.paerosci.2018.06.004.
ELDIN, A. E. A. J., ALAMEEN, R. A. A. (2016). Composite Material Usage in Aircraft Structure. Trabalho de conclusão de curso (Graduação em Engenharia). Faculdade de Engenharia, Universidade de Ciência e Tecnologia do Sudão. Disponível em: http://repository.sustech.edu/bitstream/handle/123456789/15482/CompositeMaterialUsage.pdf?sequence=1. Acesso em: 15 nov. 2022.
FILIIPENKO, M. Concept design of a high power superconducting generator for future hybrid-electric aircraft. Superconductor Science and Technology, v. 33, n. 5, p. 054002, 2020. DOI: https://doi.org/10.1088/1361-6668/ab7991.
FLYONE. Alpha Eletro. Disponível em: https://flyone.com.au/electricaircraft/alphaelectro/. Acesso em: 20 mai 2023.
FREEMAN, J.; OSTERKAMP, P.; GREEN, M.W.; GIBSON, A.R.; SCHILTGEN, B.T. Challenges and opportunities for electric aircraft thermal management. Aircraft Engineering and Aerospace Technology, v. 86, n. 6, p. 519-524, 2014. DOI: https://doi.org/10.1108/AEAT-04-2014-0042.
FREUND, D.; MCKISSACK, D.; HANSON, L.; BRODMAN, H. Dynamic taxi, take-off and landing roll analyses for large business jet aircraft. In: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, 2000, Atlanta. Proceedings... Atlanta: AIAA, 2000. p. 1526.
GALLANT, G.; GIUSEPPIN, L.; AGUERA, D. Structure de fuselage pour fuselage d'aeronef en materiau composite et aeronef equipe d'une telle structure de fuselage. Google Patents, 2007.
GNADT, A.R.; SPETH, R.L.; SABNIS, J.S.; BARRETT, S.R.H. Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Progress in Aerospace Sciences, v. 105, p. 1-30, 2019. ISSN 0376-0421. DOI: https://doi.org/10.1016/j.paerosci.2018.11.002.
GOHARDANI, A.S.; DOULGERIS, G.; SINGH, R. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Prog. Aerosp. Sci. 2011, 47, 369–391.
GREENWOOD, E.; BRENTNER, K. S.; RAU II, R. F.; GAN, Z. F. T. Challenges and opportunities for low noise electric aircraft. International Journal of Aeroacoustics, 2022;21(5-7):315-381. DOI:10.1177/1475472X221107377.
G1 NOTÍCIAS. Impulse II encerra viagem e é 1º avião a cruzar o mundo com energia solar. Disponível em: https://g1.globo.com/ciencia-e-saude/noticia/2016/07/impulse-ii-encerra-viagem-e-e-1-aviao-cruzar-o-mundo-com-energia-solar.html. Acesso em: 14 jun 2022.
HASSAN, T.H.; SOBAIH, A.E.E.; SALEM, A.E. Factors Affecting the Rate of Fuel Consumption in Aircrafts. Sustainability 2021, 13, 8066. https://doi.org/10.3390/su13148066.
HOELZEL, J.; LIU, Y.; BENSMANN, B.; WINNEFELD, C.; ELHAM, A.; FRIEDRICHS, J. et al. Conceptual design of operation strategies for hybrid electric aircraft. In: Energies, v. 11, n. 1, p. 217, 2018. DOI: https://doi.org/10.3390/en11010217.
HORNE, T.A. Pipistrel Alpha Electro: the trainer of the future? AOPA Pilot, out. 2015. Disponível em: https://www.aopa.org/news-and-media/all-news/2015/october/pilot/f_pipistrel/. Acesso em: 21 ago. 2022.
HURT, H. H. Aerodynamics for Naval Aviators. Washington, D.C.: U.S. Govt. Print. Off., 1965.
KEBEDE, A. A.; KALOGIANNIS, T.; VAN MIERLO, J.; BERECIBAR, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and Sustainable Energy Reviews, v. 159, p. 112213, 2022. ISSN 1364-0321. DOI: 10.1016/j.rser.2022.112213.
KIM, H. D.; PERRY, A. T.; ANSELL, P. J. A review of distributed electric propulsion concepts for air vehicle technology. In: AIAA/IEEE ELECTRIC AIRCRAFT TECHNOLOGIES SYMPOSIUM, 3. 2018, Cincinnati. Proceedings... Reston: AIAA, 2018. p. 1-24. ISBN 978-162410559-5. AIAA 2018-4998.
KURZKE, J. Effects of Inlet Flow Distortion on the Performance of Aircraft Gas Turbines. ASME. J. Eng. Gas Turbines Power. July 2008; 130(4): 041201. https://doi.org/10.1115/1.2901190.
LEIFSSON, L.; KO, A.; MASON, W.H.; Schetz, J.A.; GROSSMAN, B.; HAFTKA, R.T. Multidisciplinary design optimization of blended-wingbody transport aircraft with distributed propulsion. Aerosp. Sci. Technol. 2013, 25, 16–28.
MEGSON, T. H. G. Aircraft Structures for Engineering Students. 4. ed. Burlington: Elsevier, 2007.
MIELE, A. A survey of the problem of optimizing flight paths of aircraft and missiles. In: BELLAM, R. (Ed.). Mathematical optimization techniques. Berkeley and Los Angeles: University of California Press, 1963. p. 3-32.
MONDAL, B.; LOPEZ, C. F.; MUKHERJEE, P. P. Exploring the efficacy of nanofluids for lithium-ion battery thermal management. International Journal of Heat and Mass Transfer, v. 112, p. 779–794, 2017.
NGUYEN, N.T.; REYNOLDS, K.; Ting, E.; NGUYEN, N. Distributed Propulsion Aircraft with Aeroelastic Wing Shaping Control for Improved Aerodynamic Efficiency. J. Aircr. 2018, 55, 1122–1140.
PIPISTREL. Pipistrel Alpha Electro information pack rev 05. 2017. Disponível em: https://www.flypipistrel.com/info-packs/Pipistrel-Alpha-ELECTRO-Information-Pack.pdf. Acesso em: 21 ago. 2022.
PIRATEQUE, G.W.R.; SNABRIA, Y. A. C. Electric Training Aircraft in Colombia: A Review of Design, Manufacture and Feasibility. International Journal of Astronautics and Aeronautical Engineering, v.5, nº 1, 2020.
QIN, Y.; TANG, X.; JIA, T.; DUAN, Z.; ZHANG, J.; LI, Y.; ZHENG, L. Noise and vibration Suppression in Hybrid Electric Vehicles: State of the art and challenges. Renewable and Sustainable Energy Reviews, v 124, 2020. ISSN 1364-0321. DOI: https://doi.org/10.1016/j.rser.2020.109782.
REZENDE, M. C.; BOTELHO, E. C. O uso de compósitos estruturais na indústria aeroespacial. Polímeros: Ciência e Tecnologia, v. 10, nº 2, 2000.
SILVA, M.; LEMOS, B.; VIANA, M. Estudo das propriedades reológicas de nanofluidos à base de etilenoglicol e óxido de grafeno. Matéria (Rio de Janeiro), Rio de Janeiro, v. 26, 2021. DOI: https://doi.org/10.1590/s1517-707620210002.1273.
STAPLES, M. D.; MALINA, R.; SURESH, P., HILEMAN, J. I.; BARRETT, S. R. H. (2018). Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy, 114, 342-354. https://doi.org/10.1016/j.enpol.2017.12.007. ISSN 0301-4215.
STEINEGGER, R. Fuel economy for aircraft operation as a function of weight and distance. Zentrum für Aviatik (ZAV), Winterthur: ZHAW Zürcher Hochschule für Angewandte Wissenschaften. https://doi.org/10.21256/zhaw-3466.
STOLL, A.M.; BEVIRT, J.; MOORE, M.D.; FREDERICKS, W.J.; BORER, N.K. Drag Reduction Through Distributed Electric Propulsion. In AIAA AVIATION TECHNOLOGY, INTEGRATION, AND OPERATIONS CONFERECE, 14th ed., 2014, Atlanta, GA, USA.
WHEELER, P. Technology for the more and all electric aircraft of the future. In: IEEE INTERNATIONAL CONFERENCE ON AUTOMATICA (ICA-ACCA), 2016, pp. 1-5. DOI: 10.1109/ICA-ACCA.2016.7778519.
WIRIYASART, S.; HOMMALEE, C.; SIRIKASEMSUK, S.; PRURAPARK, R.; NAPHON, P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Studies in Thermal Engineering, v. 18, p. 100618, 2020.
XUE, N.; DU, W.; MARTINS, J.R.R.A.; SHYY, W. Lithium-Ion Batteries: Thermo-Mechanics, Performance, and Design Optimization. In: SHENG, W.; ZHANG, J.; YAN, J. (Eds.). Handbook of Clean Energy Systems, vol. 5: Energy Storage. John Wiley & Sons, Ltd, 2015. p. 2849-2864. ISBN 978-1-118-92896-6. DOI: https://doi.org/10.1002/9781118991978.
YETIK, O.; KARAKOC, T. H. Thermal and electrical analysis of batteries in electric aircraft using nanofluids. Journal of Energy Storage, [S.l.], v. 52, Part B, p. 104853, 2022. ISSN 2352-152X. DOI: https://doi.org/10.1016/j.est.2022.104853.
ZHANG, J.; ROUMELIOTIS, I.; ZOLOTAS, A. Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy. Energy, v. 245, p. 123239, 2022. ISSN 0360-5442. DOI: https://doi.org/10.1016/j.energy.2022.123239.
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista Brasileira de Iniciação Científica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.