La transición del sector energético a las energías renovables

una revisión sistemática sobre los impactos 3D en la generación y transmisión eléctrica

Autores/as

Palabras clave:

Descarbonización. Digitalización. Descentralización. Revisión. Impactos.

Resumen

Este estudio lleva a cabo una revisión sistemática y un rastreo de citas para investigar los efectos de la descarbonización, la digitalización y la descentralización (3D) en los sistemas eléctricos y evaluar sus repercusiones, teniendo en cuenta el objetivo global de minimizar el cambio climático. Se identificaron los efectos adversos causados por las áreas 3D, así como las posibles soluciones a estos efectos. Entre las estrategias analizadas para mitigar estos impactos se encuentran: formas de almacenamiento de energía, predicción de fuentes renovables, control de carga de vehículos eléctricos y mejoras en la ciberseguridad. Para todos estos puntos, se identificaron innovaciones en eficiencia y seguridad diseñadas para reducir los impactos de las 3D en las redes eléctricas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fernando Gonçalves Penna Neto, Universidad Federal de Itajubá

Estudiante de licenciatura en ingeniería eléctrica en la Universidad Federal de Itajubá (UNIFEI). Miembro del grupo de investigación «Tecnologías avanzadas de energía e innovaciones en sistemas y redes inteligentes».

Cláudia Eliane da Matta, Universidad Federal de Itajubá

Profesor de la Universidad Federal de Itajubá (UNIFEI). Docente en la licenciatura de Ingeniería Eléctrica y en el Programa de Postgrado en Enseñanza de las Ciencias. Es doctora en Ingeniería de Producción (Unifei), máster en Ingeniería Electrónica e Informática (ITA) y especialista en diseño instruccional (Senac). Es miembro de los grupos de investigación «Tecnologías Energéticas Avanzadas e Innovaciones en Sistemas y Redes Inteligentes» y «Tecnologías y Cultura Digital en la Enseñanza de las Ciencias».

Citas

ADERIBOLE, Adedayo; ALJARWAN, Aamna; UR REHMAN, Muhammad Habib; ZEINELDIN, Hatem H.; MEZHER, Toufic; SALAH, Khaled; DAMIANI, Ernesto; SVETINOVIC, Davor. Blockchain technology for smart grids: decentralized NIST conceptual model. IEEE Access, Nova York, v. 8, p. 43177–43190, 2020. DOI: 10.1109/ACCESS.2020.2977149. Disponível em: https://ieeexplore.ieee.org/document/9018104/. Acesso em: 6 jun. 2024.

AKKAOUI, Raifa; STEFANOV, Alexandru; PALENSKY, Peter; EPEMA, Dick H. J. A taxonomy and lessons learned from blockchain adoption within the internet of energy paradigm. IEEE Access, Nova York, v. 10, p. 106708–106739, 2022. DOI: 10.1109/ACCESS.2022.3212148. Disponível em: https://ieeexplore.ieee.org/document/9911641/. Acesso em: 6 jun. 2024.

AKOBENG, A K. Understanding systematic reviews and meta-analysis. Archives of Disease in Childhood, Londres, v. 90, n. 8, p. 845–848, 2005. DOI: 10.1136/adc.2004.058230. Disponível em: https://adc.bmj.com/lookup/doi/10.1136/adc.2004.058230. Acesso em: 24 jan. 2024.

BELLIZIO, Federica; XU, Wangkun; QIU, Dawei; YE, Yujian; PAPADASKALOPOULOS, Dimitrios; CREMER, Jochen L.; TENG, Fei; STRBAC, Goran. Transition to digitalized paradigms for security control and decentralized electricity market. Proceedings of the IEEE, Nova York, v. 111, n. 7, p. 744–761, 2023. DOI: 10.1109/JPROC.2022.3161053. Disponível em: https://ieeexplore.ieee.org/document/9756414/. Acesso em: 16 set. 2023.

CAO, Zhiao; WANG, Jinkuan; ZHAO, Qiang; HAN, Yinghua; LI, Yuchun. Decarbonization scheduling strategy optimization for electricity-gas system considering electric vehicles and refined operation model of power-to-gas. IEEE Access, Nova York, v. 9, p. 5716–5733, 2021. DOI: 10.1109/ACCESS.2020.3048978. Disponível em: https://ieeexplore.ieee.org/document/9312594/. Acesso em: 16 set. 2023.

CLARK, Justin; GLASZIOU, Paul; DEL MAR, Chris; BANNACH-BROWN, Alexandra; STEHLIK, Paulina; SCOTT, Anna Mae. A full systematic review was completed in 2 weeks using automation tools: a case study. Journal of Clinical Epidemiology, Amsterdã, v. 121, p. 81–90, 2020. DOI: 10.1016/j.jclinepi.2020.01.008. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S089543561930719X. Acesso em: 4 mar. 2024.

COLLADOS-RODRIGUEZ, Carlos; CHEAH-MANE, Marc; CIFUENTES-GARCIA, Francisco; PRIETO-ARAUJO, Eduardo; GOMIS-BELLMUNT, Oriol; CORONADO, Luis; LONGAS, Carmen; SANZ, Silvia; MARTIN, Macarena; CORDON, Antonio. Integration of an MMC-HVDC link to the existing LCC-HVDC link in balearic islands based on grid-following and grid-forming operation. IEEE Transactions on Power Delivery, Nova York, v. 37, n. 6, p. 5278–5288, 2022. DOI: 10.1109/TPWRD.2022.3175251. Disponível em: https://ieeexplore.ieee.org/document/9775608/. Acesso em: 16 set. 2023.

DENHOLM, P.; MAI, T.; KENYON, RW.; KROPOSKI, B.; O’MALLEY, M. Inertia and the power grid: a guide without the spin. Golden: National Renewable Energy Laboratory, mai. 2020. DOI: 10.2172/1659820. Disponível em: http://dx.doi.org/10.2172/1659820. Acesso em: 25 jun. 2024.

DI SILVESTRE, Maria Luisa; FAVUZZA, Salvatore; SANSEVERINO, Eleonora Riva; ZIZZO, Gaetano. How decarbonization, digitalization and decentralization are changing key power infrastructures. Renewable and Sustainable Energy Reviews, Amsterdã, v. 93, p. 483–498, 2018. DOI: 10.1016/j.rser.2018.05.068. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032118304283. Acesso em: 16 jan. 2024.

DONG, Zhao Yang; ZHANG, Yuchen. Interdisciplinary vision of the digitalized future energy systems. IEEE Open Access Journal of Power and Energy, Nova York, v. 8, p. 557–569, 2021. DOI: 10.1109/OAJPE.2021.3108937. Disponível em: https://ieeexplore.ieee.org/document/9536502/. Acesso em: 16 set. 2023.

U.S DEPARTMENT OF ENERGY. Median driving range of all-electric vehicles tops 250 miles for model year 2020. EERE, Washington: Office of Energy Efficiency and Renewable Energy, 2021. Disponível em: https://www.energy.gov/eere/vehicles/articles/fotw-1167-january-4-2021-median-driving-range-all-electric-vehicles-tops-250. Acesso em: 11 nov. 2023.

ENGEL, Hauke; HENSLEY, Russell; KNUPFER, Stefan; SAHDEV, Shivika. How electric vehicles could change the load curve. Mckinsey, Nova York: Mckinsey & Company, 2018. Disponível em: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-potential-impact-of-electric-vehicles-on-global-energy-systems. Acesso em: 28 jan. 2024.

HERNANDO-GIL, Ignacio; ZHANG, Zhipeng; NDAWULA, Mike; DJOKIC, Sasa. DG Locational Incremental Contribution to Grid Supply Level. IEEE Transactions on Industry Applications, Nova York, v. 58, n. 1, p. 5–14, 2022. DOI: 10.1109/TIA.2021.3118337. Disponível em: https://ieeexplore.ieee.org/document/9562294/. Acesso em: 16 set. 2023.

HOLTTINEN, Hannele; KIVILUOMA, Juha; FLYNN, Damian; SMITH, J. Charles; ORTHS, Antje; ERIKSEN, Peter Borre; CUTULULIS, Nicolaos; SODER, Lennart; KORPAS, Magnus; ESTANQUEIRO, Ana; MACDOWELL, Jason; TUOHY, Aidan; VRANA, Til Kristian; O’MALLEY, Mark. System impact studies for near 100% renewable energy systems dominated by inverter based variable generation. IEEE Transactions on Power Systems, Nova York, v. 37, n. 4, p. 3249–3258, 2022. DOI: 10.1109/TPWRS.2020.3034924. Disponível em: https://ieeexplore.ieee.org/document/9246271/. Acesso em: 16 set. 2023.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE). About IEEE Xplore, 2024a. Disponível em: https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore. Acesso em: 18 jun. 2024.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE). Search result, 2024b. Disponível em: https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=impacts%20AND%20(decarboni%3Fation%20OR%20decentrali%3Fation%20OR%20digitali%3Fation). Acesso em: 25 dez. 2024.

JAMIL, F.; IQBAL, N.; IMRAN; AHMAD, S.; KIM, D. Peer-to-peer energy trading mechanism based on blockchain and machine learning for sustainable electrical power supply in smart grid. IEEE Access, Nova York, v. 9, p. 39193-39217, 2021. DOI: 10.1109/access.2021.3060457. Disponível em: https://ieeexplore.ieee.org/document/9358144. Acesso em: 25 jun. 2024.

KEZ, Dlzar Al; FOLEY, Aoife M.; MORROW, D. John. Analysis of fast frequency response allocations in power systems with high system non-synchronous penetrations. IEEE Transactions on Industry Applications, Nova York, v. 58, n. 3, p. 3087–3101, 2022. DOI: 10.1109/TIA.2022.3160997. Disponível em: https://ieeexplore.ieee.org/document/9739850/. Acesso em: 16 set. 2023.

KONCAR, Ilija; BAYRAM, I. Safak. A probabilistic methodology to quantify the impacts of cold weather on electric vehicle demand: a case study in the U.K. IEEE Access, Nova York, v. 9, p. 88205–88216, 2021. DOI: 10.1109/ACCESS.2021.3090534. Disponível em: https://ieeexplore.ieee.org/document/9459753/. Acesso em: 16 set. 2023.

LAZARD. Levelized cost of energy and levelized cost of storage 2018. Lazard, 2018. Disponível em: https://www.lazard.com/research-insights/levelized-cost-of-energy-and-levelized-cost-of-storage-2018/. Acesso em: 4 nov. 2023.

LEFEBVRE, Carol; GLANVILLE, Julie; BRISCOE, Simon; FEATHERSTONE, Robin; LITTLEWOOD, Anne; METZENDORF, Maria-Inti; NOEL-STORR, Anna; PAYNTER, Robin; RADER, Tamara; THOMAS, James; WIELAND, L. Susan. Technical Supplement to Chapter 4: Searching for and selecting studies. In: HIGGINS, Julian P. T.; THOMAS, James; CHANDLER, Jacqueline; CUMPSTON, Miranda; LI, Tianjin; PAGE, Matthew J.; WELCH; Vivian A (ed.). Cochrane handbook for systematic reviews of interventions. Version 6.4. Cochrane, Londres, 2023. Disponível em: www.training.cochrane.org/handbook. Acesso em: 5 fev. 2024.

LI, Shuangqi; ZHAO, Pengfei; GU, Chenghong; LI, Jianwei; CHENG, Shuang; XU, Minghao. Online battery protective energy management for energy-transportation nexus. IEEE Transactions on Industrial Informatics, Nova York, v. 18, n. 11, p. 8203–8212, 2022. DOI: 10.1109/TII.2022.3163778. Disponível em: https://ieeexplore.ieee.org/document/9745763/. Acesso em: 16 set. 2023.

MANDAL, Nitai. An approach towards citation tracking: special reference to academic and research libraries. International Journal of Information Movement, Londres, v. 2, n. 8, p. 148-152, dec. 2017. Disponível em: https://www.ijim.in/paper-23-an-approach-towards-citation-tracking-special-reference-to-academic-and-research-libraries/. Acesso em: 17 jul. 2024.

MINISTÉRIO DE MINAS E ENERGIA. Transição energética: a mudança de energia que o planeta precisa, 2023. Disponível em: https://www.gov.br/mme/pt-br/assuntos/noticias/transicao-energetica-a-mudanca-de-energia-que-o-planeta-precisa. Acesso em: 27 fev. 2024.

NAZARI-HERIS, Morteza; MIRZAEI, Mohammad Amin; MOHAMMADI-IVATLOO, Behnam; MARZBAND, Mousa; ASADI, Somayeh. Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads. Journal of Cleaner Production, Amsterdã, v. 244, p. 1-12, 2020. DOI: 10.1016/j.jclepro.2019.118769. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S095965261933639X. Acesso em: 9 fev. 2024.

NELEGA, Raluca; GREU, Dan Ioan; JECAN, Eusebiu; REDNIC, Vasile; ZAMFIRESCU, Ciprian; PUSCHITA, Emanuel; TURCU, Romulus Valeriu Flaviu. Prediction of power generation of a photovoltaic power plant based on neural networks. IEEE Access, Nova York, v. 11, p. 20713–20724, 2023. DOI: 10.1109/ACCESS.2023.3249484. Disponível em: https://ieeexplore.ieee.org/document/10054046/. Acesso em: 16 set. 2023.

POUDEL, Shiva; BLACK, Gary D.; MUKHERJEE, Monish; REIMAN, Andrew P. Multi-objective power distribution operations: characterizing conflict and system volatility. IEEE Access, Nova York, v. 11, p. 103881–103889, 2023. DOI: 10.1109/ACCESS.2023.3318267. Disponível em: https://ieeexplore.ieee.org/document/10261170/. Acesso em: 6 jun. 2024.

PUDJIANTO, Danny; STRBAC, Goran. Whole system value of long-duration electricity storage in systems with high penetration of renewables. iEnergy, Nova York, v. 1, n. 1, p. 114–123, 2022. DOI: 10.23919/IEN.2022.0004. Disponível em: https://ieeexplore.ieee.org/document/9762239/. Acesso em: 16 set. 2023.

RENEWABLE ENERGY POLICY NETWORK FOR THE 21ST CENTURY (REN21). Renewables 2023 Global Status Report: global overview, 2023. Disponível em: https://www.ren21.net/gsr-2023/modules/global_overview/. Acesso em: 15 jan. 2024.

RIVERA, Sebastian; GOETZ, Stefan M.; KOURO, Samir; LEHN, Peter W.; PATHMANATHAN, Mehanathan; BAUER, Pavol; MASTROMAURO, Rosa Anna. Charging infrastructure and grid integration for electromobility. Proceedings of the IEEE, Nova York, v. 111, n. 4, p. 371–396, 2023. DOI: 10.1109/JPROC.2022.3216362. Disponível em: https://ieeexplore.ieee.org/document/9940564/. Acesso em: 16 set. 2023.

ROGELJ, Joeri; ELZEN, Michel Den; HÖHNE, Niklas; FRANSEN, Taryn; FEKETE, Hanna; WINKLER, Harald; SCHAEFFER, Roberto; SHA, Fu; RIAHI, Keywan; MEINSHAUSEN, Malte. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, Londres, v. 534, n. 7609, p. 631–639, 2016. DOI: 10.1038/nature18307. Disponível em: https://www.nature.com/articles/nature18307. Acesso em: 19 out. 2023.

SAHOO, Subrat; TIMMANN, Pascal. Energy Storage Technologies for Modern Power Systems: A detailed analysis of functionalities, potentials, and impacts. IEEE Access, Nova York, v. 11, p. 49689–49729, 2023. DOI: 10.1109/ACCESS.2023.3274504. Disponível em: https://ieeexplore.ieee.org/document/10121760/. Acesso em: 16 set. 2023.

SONG, Jie; HE, Guannan; WANG, Jianxiao; ZHANG, Pingwen. Shaping future low-carbon energy and transportation systems: Digital technologies and applications. iEnergy, Nova York, v. 1, n. 3, p. 285–305, 2022. DOI: 10.23919/IEN.2022.0040. Disponível em: https://ieeexplore.ieee.org/document/9954284/. Acesso em: 6 jun. 2024.

SONG, Yonghua; SHAHIDEHPOUR, Mohammad; RAHMAN, Saifur; BRANDON, Nigel; KAI, Strunz; LIN, Jin; ZHAO, Yuxuan. Utilization of energy storage and hydrogen in power and energy systems: viewpoints from five aspects. CSEE Journal of Power and Energy Systems, Nova York, v. 9, n.1 , p. 1-7, 2023. DOI: 10.17775/CSEEJPES.2022.08320. Disponível em: https://ieeexplore.ieee.org/document/10026205. Acesso em: 16 set. 2023.

SOUTAR, Iain. Dancing with complexity: Making sense of decarbonisation, decentralisation, digitalisation and democratisation. Energy Research & Social Science, v. 80, n. 102230, 2021. DOI 10.1016/j.erss.2021.102230. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2214629621003236. Acesso em: 5 jan. 2025.

STRBAC, Goran; PAPADASKALOPOULOS, Dimitrios; CHRYSANTHOPOULOS, Nikolaos; ESTANQUEIRO, Ana; ALGARVIO, Hugo; LOPES, Fernando; DE VRIES, Laurens; MORALES-ESPANA, German; SIJM, Jos; HERNANDEZ-SERNA, Ricardo; KIVILUOMA, Juha; HELISTO, Niina. Decarbonization of electricity systems in europe: market design challenges. IEEE Power and Energy Magazine, Nova York, v. 19, n. 1, p. 53–63, 2021. DOI 10.1109/MPE.2020.3033397. Disponível em: https://ieeexplore.ieee.org/document/9318571/. Acesso em: 9 fev. 2024.

TAYYEBI, Ali; GROSS, Dominic; ANTA, Adolfo; KUPZOG, Friederich; DORFLER, Florian. Frequency stability of synchronous machines and grid-forming power converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, Nova York, v. 8, n. 2, p. 1004–1018, 2020. DOI: 10.1109/JESTPE.2020.2966524. Disponível em: https://ieeexplore.ieee.org/document/8959148/. Acesso em: 9 fev. 2024.

TIRUNAGARI, Sridevi; GU, Mingchen; MEEGAHAPOLA, Lasantha. Reaping the benefits of smart electric vehicle charging and vehicle-to-grid technologies: regulatory, policy and technical aspects. IEEE Access, Nova York, v. 10, p. 114657–114672, 2022. DOI: 10.1109/ACCESS.2022.3217525. Disponível em: https://ieeexplore.ieee.org/document/9931106/. Acesso em: 16 set. 2023.

UNITED NATIONS. The Sustainable Development Goals Report 2022. 2022. Disponível em: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf. Acesso em: 20 mar. 2024.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Sources of Greenhouse Gas Emissions. 2023. Disponível em: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. Acesso em: 29 nov. 2023.

WAGNER, O.; GÖTZ, T. Presentation of the 5Ds in Energy Policy: A Policy Paper to Show How Germany Can Regain Its Role as a Pioneer in Energy Policy. Energies, v. 14, n. 20, 18 out. 2021. DOI: 10.3390/en14206799. Disponível em: https://www.mdpi.com/1996-1073/14/20/6799. Acesso em: 7 jan. 2025.

WU, Dan; SEO, Gab-Su; XU, Lie; SU, Chi; KOCEWIAK, Lukasz; SUN, Yin; QIN, Zian. Grid integration of offshore wind power: standards, control, power quality and transmission. IEEE Open Journal of Power Electronics, Nova York, v. 5, p. 583–604, 2024. DOI: 10.1109/OJPEL.2024.3390417. Disponível em: https://ieeexplore.ieee.org/document/10504957/. Acesso em: 6 jun. 2024.

XIE, Le; ZHENG, Xiangtian; SUN, Yannan; HUANG, Tong; BRUTON, Tony. Massively digitized power grid: opportunities and challenges of use-inspired AI. Proceedings of the IEEE, Nova York, v. 111, n. 7, p. 762–787, 2023. DOI: 10.1109/JPROC.2022.3175070. Disponível em: https://ieeexplore.ieee.org/document/9803820/. Acesso em: 16 set. 2023.

ZHONGTUO, S.; YAO, W.; ZHOUPING, L.; ZENG, L.; ZHAO, Y.; ZHANG, R.; TANG, Y.; WEN, J. Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy, Amsterdã, v. 278, p. 1-25, nov. 2020. DOI: 10.1016/j.apenergy.2020.115733. Disponível em: https://www.sciencedirect.com/science/article/pii/S0306261920312228. Acesso em: 25 jun. 2024.

ZOGRAFOPOULOS, Ioannis; HATZIARGYRIOU, Nikos D.; KONSTANTINOU, Charalambos. Distributed energy resources cybersecurity outlook: vulnerabilities, attacks, impacts, and mitigations. IEEE Systems Journal, Nova York, v. 17, n. 4, p. 6695–6709. DOI: 10.1109/JSYST.2023.3305757. Disponível em: https://ieeexplore.ieee.org/document/10238347/. Acesso em: 6 jun. 2024.

Publicado

2025-04-15

Cómo citar

Gonçalves Penna Neto, F., & Eliane da Matta, C. (2025). La transición del sector energético a las energías renovables: una revisión sistemática sobre los impactos 3D en la generación y transmisión eléctrica. Revista Brasileira De Iniciação Científica, e025012. Recuperado a partir de https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/1876