Método bootstrap: una aplicación en dados olímpicos via python
Palabras clave:
Método bootstrap, Juegos olímpicos, Modelos lineales generalizadosResumen
Los métodos de re-muestreo bootstrap ocupan un lugar importante en el mundo de la estadística por su simplicidad e poderío computacional. Durante la última década, extensiones como bootstrap bayesiano, duplo, bootknife fueron propuestos. En la práctica, el método de máxima verosimilitud es frecuentemente utilizado para encontrar estimadores con buenas propiedades, por otro lado, para algunas situaciones os estimadores obtenidos son sesgados, en particular cuando el tamaño de la muestra es pequeño. Para resolver este problema, técnicas de bootstrap pueden ser utilizados. Un conjunto de datos referente a los juegos olímpicos es utilizado para mostrar la metodología estudiada.
Descargas
Citas
AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. v.19, p. 716-723, 1974.
ANDERSON, T. W. e DARLING, D. A. Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes. Annals of Mathematical Statistics. v.23, p. 193–212, 1952.
CIRILLO, M. A. et al. Avaliação de métodos de estimação intervalar para funções lineares binomiais via Bootstrap finito. Ciência e Agrotecnologia. v, 33, p, 1741 -1746, 2009.
CHEN, P.Y. e POPOVICH, P.M. Correlation: parametric and nonparametric measures. Thousand Oaks: Sage Publication, 2002.
CLÍMACO, G. N. Otimização da extração de compostos bioativos da beterraba por metodologia de superfície de resposta e método de Bootstrap. 2019. Dissertação (mestrado em Engenharia de Alimentos )-Universidade Estadual de Maringá.
DAVIDSON, R. e MACKINNON, J. G. Improving the reliability of bootstrap tests with the fast double bootstrap. Computational Statistics Data Analysis. v.51, p. 3259-3281, 2007.
DOGAN, C. D. Applying bootstrap resampling to compute confidence intervals for
various statistics with R. Eurasian Journal of Educational Research. v.68, p. 1-17, 2017.
EDGARD MATSUKI. Brasil sobe de 37º para 35º no ranking histórico das Olimpíadas. Agência Brasil, c2016. Disponível em: https://agenciabrasil,ebc,com,br/rio-2016/noticia/2016-08/brasil-sobe-de-37o-para-35o-no-quadro-de-medalhas-com-19-conquistadas-no. Acesso em: 08 de jul. de 2021
EFRON, B. Bootstrap methods: another look at the jackknife. The annals of Statistics. v.7, p. 1–26, 1979.
EFRON, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation, Journal of the American Statistical Association. v.78, p. 316–331, 1983.
EFRON, B. e TIBSHIRANI, R. J. An introduction to the bootstrap. Chapman and Hall: New York, 2014.
GILES, H. e MENTCH, L. Bootstrap bias corrections for ensemble methods. Statistics and Computing. V. 28, p. 77-86, 2018.
HESTERBERG, T. C. Smoothed bootstrap and jackboot sampling. MathSoft. Inc. Seattle, 1999.
KAGGLE. Your Machine Learning and Data Science Community, Disponível em: https://kaggle,com. Acesso em: 08 de jul. de 2021
LIMA, F. P. Inferência bootstrap em modelos de regressão beta. 2017. Tese (doutorado Estatística) - Universidade Federal de Pernambuco.
MCCULLAGH, P. e NELDER, J. A. Generalized Linear Models. Chapman and Hall: London, 1989.
MOREIRA, G. R. F. Aplicação de método estocástico no cálculo das provisões de sinistros. 2020. Trabalho de conclusão de curso de graduação - Universidade Federal de São Paulo.
NELDER, J. A. e WEDDERBURN, R. W. M. Generalized linear models. Journal of the Royal Statistical Society, v.135, p. 370-384, 1972.
PAULA, G. A. Modelos de regressão com apoio computacional. Instituto de Matemática e Estatística, Universidade de São Paulo, 1993.
R CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna: Austria, 2021.
ROSSUM, G. V. e DRAKE, F. L. Python Tutorial. Python Software Foundation, 2012.
RUBIN, D. J. The bayesian bootstrap. The annals of Statistics. v.9, p. 130–134, 1981.
TANG, G. e LI, J. Regression analysis-based chinese olympic games competitive sports strength evaluation model research. The Open Cybernetics Systemics Journal. v.9, p. 2729–2735, 2015.
THE WORLD BANK. Is a unique global partnership fighting poverty worldwide through sustainable solutions. Disponível em: https://data,worldbank,org/. Acessado em: 10 de jul, de 2021.
WIT, E. et al. ’all models are wrong,,,’: an introduction to model uncertainty. Statistica Neerlandica, v.66, p. 217–236, 2012.
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Brasileira de Iniciação Científica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.