Eliminación de fósforo de las aguas residuales mediante sistemas de humedales construidos de flujo subsuperficial horizontal

revisión bibliométrica y bibliográfica (2016 - 2021)

Autores/as

  • Eduarda Almeida Copati UFABC
  • Luciane Fontana UFABC
  • Tatiane Araujo de Jesus UFABC

Palabras clave:

Eutrofización. Macrófito. Material de apoyo. Nutritivo. Tratamiento de aguas residuales.

Resumen

Este estudio tuvo como objetivo evaluar la remoción de fósforo total (PT) de los efluentes por Sistemas de Humedales Construidos (SAC) con flujo subsuperficial horizontal a través de una revisión bibliométrica y bibliográfica (2016 - 2021). Se realizaron búsquedas en el portal Scopus con las palabras clave: “phosphorus”, “constructed wetlands”, “substrate” y “horizontal”. Se prepararon gráficos, mapa cienciométrico y análisis de componentes principales. Se obtuvieron 34 artículos, 17 de China. El sustrato más frecuente con la mayor eficiencia de eliminación de PT (100%) fue la grava. El macrófito que mostró la mayor eficiencia de eliminación de PT fue Typha domingensis.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Eduarda Almeida Copati, UFABC

Estudante de graduação em Bacharelado em Ciência e Tecnologia. Universidade Federal do ABC.

ORCID: https://orcid.org/0000-0001-7377-1023

Luciane Fontana, UFABC

Doutora em Ciências Biológicas. Universidade Estadual Paulista, Rio Claro, SP, Brasil.

ORCID: https://orcid.org/0000-0002-8951-845X

Tatiane Araujo de Jesus, UFABC

Doutora em Engenharia Hidráulica e Saneamento. Universidade Federal do ABC.

ORCID: https://orcid.org/000-0002-5206-6584

Citas

ANGASSA, K.; LETA, S.; MULAT, W.; KLOSS, H.; MEERS, E. Evaluation of Pilot-Scale Constructed Wetlands with Phragmites karka for Phytoremediation of Municipal Wastewater and Biomass Production in Ethiopia. Environmental Processes, v. 6, n. 1, p. 65–84, 2019. DOI: https://doi.org/10.1007/s40710-019-00358-x.

ANH, B. T. K.; THANH, N. V.; PHUONG, N. M.; HA, N. T. H.; YEN, N. H.; LAP, B. Q.; KIM, D.D. Selection of Suitable Filter Materials for Horizontal Subsurface Flow Constructed Wetland Treating Swine Wastewater. Water, Air, and Soil Pollution, v. 231, n. 2, 2020. DOI: https://doi.org/10.1007/s11270-020-4449-6.

BALDOVI, A. A.; AGUIAR, A. R. B.; BENASSI, R. F.; VYMAZAL, J.; JESUS, T. A. Phosphorus removal in a pilot scale free water surface constructed wetland: hydraulic retention time, seasonality and standing stock evaluation. Chemosphere, v. 266, p. 12839, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.128939

BEAULIEU, J. J.; DELSONTRO T.; DOWNING, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications, v. 10, p. 1375, 2019. DOI: https://doi.org/10.1038/s41467-019-09100-5

BENASSI, R. F.; MATHEUS, D. R.; SUBTIL, E. L.; COELHO, L. H. G.; OLIVEIRA, L. H. S.; MORETTO, M. R. D.; JESUS, T. A.; PAGANINI, W. S.; BALDOVI, A. A.; SANCHEZ, A. A.; STOPA, J. M. Manual de sistemas de Wetlands construídas para o tratamento de esgotos sanitário: implantação, operação e manutenção. Santo André: UFABC, 2018. ISBN: 978-85-65212-85-4

BOLTON, L.; JOSEPH, S.; GREENWAY, M.; DONNE, S.; MUNROE, P.; MARJO, C. E. Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecological Engineering, v. 1, p. 100005, 2019. DOI: https://doi.org/10.1016/j.ecoena.2019.100005

CANDIDO, M. R.; CAMPOS, L. A. Pandemia reduz submissões de artigos acadêmicos assinados por mulheres. Blog DADOS, 2020. Disponível em: http://dados.iesp.uerj.br/pandemia-reduz-submissoes-de-mulheres/. Acesso em 17 fev. 2023.

CAO, Z.; ZHOU, L.; GAO, Z.; HUANG, Z.; JIAO, X.; ZHANG, Z.; MA, K.; DI, Z.; BAI, Y. Comprehensive benefits assessment of using recycled concrete aggregates as the substrate in constructed wetland polishing effluent from wastewater treatment plant. Journal of Cleaner Production, v. 288, p. 125551, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.125551.

CHAKRABORTI, R. K.; BAYS, J. S. Natural treatment of high-strength reverse osmosis concentrate by constructed wetlands for reclaimed water use. Water (Switzerland), v. 12, n. 1, 2020. DOI: https://doi.org/10.3390/w12010158.

DE LA MORA-OROZCO, C. GONZÁLEZ-ACUÑA, I. J.; SAUCEDO-TERÁN, R. A.; FLORES-LÓPEZ, H. E.; RUBIO-ARIAS, H. O.; OCHOA-RIVERO, J. M. Removing organic matter and nutrients from pig farm wastewater with a constructed wetland system. International Journal of Environmental Research and Public Health, v. 15, n. 5, 2018. DOI: https://doi.org/10.3390/ijerph15051031.

DELGADO-GONZÁLEZ, L.; PROST-BOUCLE, S.; TROESCH, S.; MOLLE, P. Granulated apatite filters for phosphorous retention in treatment wetlands: Experience from full-scale applications. Journal of Water Process Engineering, v. 40, 2021. DOI: https://doi.org/10.1016/j.jwpe.2021.101927

DELL'OSBEL, N.; COLARES, G. S.; OLIVEIRA, G. A.; RODRIGUES, L. R.; SILVA, F. P.; RODRIGUEZ, A. L.; LÓPEZ, D. A. R.; LUTTERBECK, C. A.; SILVEIRA, E. O.; KIST, L. T.; MACHADO, E. L. Hybrid constructed wetlands for the treatment of urban wastewaters: Increased nutrient removal and landscape potential. Ecological Engineering, v. 158, n. 158, p. 106072, 2020. DOI: https://doi.org/10.1016/j.ecoleng.2020.106072

DIRES, S.; BIRHANU, T.; AMBELU, A. Use of broken brick to enhance the removal of nutrients in subsurface flow constructed wetlands receiving hospital wastewater. Water Science and Technology, v. 79, n. 1, p. 156–164, 2019. DOI: https://doi.org/10.2166/wst.2019.037.

DODDS, W. K. The Role of Periphyton in Phosphorus Retention in Shallow Freshwater Aquatic Systems. Journal of Phycology, v. 39, n. 5, p. 840–849, 2003. DOI: 10.1046/j.1529-8817.2003.02081.x

FAHIM, R.; LU, X.; JILANI, G.; HUSSAIN, J.; HUSSAIN, I. Comparison of floating-bed wetland and gravel filter amended with limestone and sawdust for sewage treatment. Environmental Science and Pollution Research, v. 26, n. 20, p. 20400–20410, 2019. DOI: https://doi.org/10.1007/s11356-019-05325-5.

GAO, Y.; XIE, Y. W.; ZHANG, Q.; WANG, A. L.; YU, Y. X.; YANG, L. Y. Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland. Water Research, v. 108, p. 39–45, 2017. DOI: http://dx.doi.org/10.1016/j.watres.2016.10.033.

GAO, Y.; YAN, C.; WEI, R.; ZHANG, W.; SHEN, J.; WANG, M.; GAO, B.; YANG, Y.; YANG, L. Photovoltaic electrolysis improves nitrogen and phosphorus removals of biochar-amended constructed wetlands. Ecological Engineering, v. 138, n. April, p. 71–78, 2019. DOI: https://doi.org/10.1016/j.ecoleng.2019.07.004.

GAO, Y.; ZHANG, W.; GAO, B.; JIA, W.; MIAO, A.; XIAO, L.; YANG, L. Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar. Water Research, v. 139, p. 301–310, 2018. DOI: https://doi.org/10.1016/j.watres.2018.04.007.

GARCÍA-VALERO, A.; MARTÍNEZ-MARTÍNEZ, S.; FAZ, A.; TERRERO, M. A.; MUÑOZ, M. A.; GÓMEZ-LÓPEZ, M. D.; ACOSTA, J. A. Treatment of wastewater from the tannery industry in a constructed wetland planted with phragmites australis. Agronomy, v. 10, n. 2, p. 1–15, 2020. DOI: https://doi.org/10.3390/agronomy10020176

GUIMARÃES, A. J. R.; MOREIRA, P. S.C.; BEZERRA, C. A. Modelos de inovação: Análise bibliométrica da produção científica. Brazilian Journal of Information Science: Research trends. v. 15, 2021. DOI: doi.org/10.36311/1981.1640.2001.v15.e02106

JONES, F. A ameaça dos microsplásticos. Revista pesquisa FAPESP, 2019. Edição 281. Disponível em <https://revistapesquisa.fapesp.br/a-ameaca-dos-microplasticos/>. Acesso em 3 de junho de 2022.

LE MOAL, M.; GASCUEL-ODOUX, C.; MÉNESGUEN, A.; SOUCHON, Y.; ÉTRILLARD, C.; LEVAIN, A.; MOATAR, F.; PANNARD, A.; SOUCHU, P.; LEFEBVRE, A.; PINAY, G. Eutrophication: A new wine in an old bottle? Science of The Total Environment, v. 651, p. 1-11, 2019. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.139

LIMA, R. A. de; VELHO, L. M. L. S.; FARIA, L. I. L. de. Análise cientométrica da atividade científica na área de solos: o caso da América Latina. Embrapa Solos. v. 172, 2011.

LIU, H.; HU, Z.; JIANG, L.; ZHUANG, L.; HAO, L.; NIE, L. Roles of carbon source-derived extracellular polymeric substances in solids accumulation and nutrient removal in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, v. 362, p. 702–711, 2019. DOI: https://doi.org/10.1016/j.cej.2019.01.067.

MACHADO, A. I.; BERETTA, M.; FRAGOSO, R; DUARTE, E. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. Journal of Environmental Management, v. 187, p. 560–570, 2017. DOI: https://doi.org/10.1016/j.jenvman.2016.11.015.

MARONEZE, M. M.; ZEPKA, L. Q.; VIEIRA, J. G.; QUEIROZ, M. I.; JACOB-LOPES, E. A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais. Revista Ambiente e Água, v. 9, n. 3, p. 445–458, 2014. DOI: 10.4136/ambi-agua.1403

MCCUNE, B.; MEFFORD, M. J. PC-ORD. Multivariate analysis of ecological data. Gleneden Beach, Oregon: MjM Software, 2011.

MENDONÇA, H. V.; RIBEIRO, C. B. M.; BORGES, A. C.; BASTOS, R. R. Remoção de nitrogênio e fósforo de águas residuárias de laticínios por sistemas alagados construídos operando em bateladas. Revista Ambiente e Água, v. 7, n. 2, p. 75–87, 2012. DOI: http://dx.doi.org/10.4136/ambi-agua.805

MESQUITA, C.; ALBUQUERQUE, A.; AMARAL, L.; NOGUERIA, R. Effectiveness and temporal variation of a full-scale horizontal constructed wetland in reducing nitrogen and phosphorus from domestic wastewater. ChemEngineering, v. 2, n. 1, p. 1–14, 2018. DOI: https://doi.org/10.3390/chemengineering2010003.

METALI, H. M. K. H.; GUO, Z. R.; DURAMAN, S. B. Removal of various pollutants using constructed wetland with selected plants in humid tropical areas. IET Conference Publications, v. 2018, n. CP750, 2018. DOI: 10.1049/cp.2018.1512.

MITSCH, W. J. Landscape design and the role of created, restored, and natural riparian wetlands in controlling nonpoint source pollution. Ecological Engineering, v. 1 (1−2), p. 27−47, 1992. DOI: https://doi.org/10.1016/0925-8574(92)90024-V

MIRANDA, S. T.; MATOS, A. T.; MATOS, M. P.; SARAIVA, C. Efficiency of horizontal subsurface flow-constructed wetlands considering different support materials and the cultivation positions of plant species. Revista Ambiente e Água, v. 15, n. 2, 2020. DOI: https://doi.org/10.4136/ambi-agua.2476

NGUYEN, T. A. H.; NGO, H. H.; GUO, W. S.; NGUYEN, T. H. H.; SODA, S.; VU, N. D.; BUI, T. K. A.; VO, T. D. H.; BUI, T. T.; NGUYEN, T. T.; PHAM, T. T. White hard clam (Meretrix lyrata) shells media to improve phosphorus removal in lab-scale horizontal sub-surface flow constructed wetlands: Performance, removal pathways, and lifespan. Bioresource Technology, v. 312, n. May, 2020. DOI: https://doi.org/10.1016/j.biortech.2020.123602

NI, L.; XU, J; CHU, J.; LI, S.; WANG, P.; LI, Y.; LI, Y.; ZHU, L.; WANG, C. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater. Bulletin of Environmental Contamination and Toxicology, v. 97, n. 1, p. 131–137, 2016. DOI: 10.1007/s00128-016-1844-1.

NI, Q.; WANG, T.; LIAO, J.; SHI, W.; HUANG, Z.; MIAO, H.; WU, P.; RUAN, W. Operational performances and enzymatic activities for eutrophic water treatment by vertical-flow and horizontal-flow constructed wetlands. Water (Switzerland), v. 12, n. 7, 2020. DOI: 10.3390/w12072007.

NONGMAITHEM, A.; RADHIKA, B. Assessment of secondary treatment efficiency of dairy wastewater using pilot constructed wetland with hair waste modified substrate. Indian Journal of Science and Technology, v. 9, n. 39, 2016. DOI: 10.17485/ijst/2016/v9i39/100779

SAEED, T.; MIAH, M. J.; MAJED, N.; HASAN, M.; KHAN, T. Pollutant removal from landfill leachate employing two-stage constructed wetland mesocosms: co-treatment with municipal sewage. Environmental Science and Pollution Research, v. 27, n. 22, p. 28316–28332, 2020. DOI: https://doi.org/10.1007/s11356-020-09208-y.

SANCHEZ, A. A.; FERREIRA, A. C.; STOPA, J. M.; BELLATO, F. C.; JESUS, T. A.; COELHO, L. H. G.; DOMINGUES, M. R.; SUBTIL, E. L.; MATHEUS, D. R.; BENASSI, R. F. Organic Matter, Turbidity, and Apparent Color Removal in Planted (Typha sp. and Eleocharis sp.) and Unplanted Constructed Wetlands. Journal of Environmental Engineering, v. 144, p. 06018007, 2018. DOI: 10.1061/(ASCE)EE.1943-7870.0001443

SCHIERANO, M. C.; MAINE, M. A.; PANIGATTI, M. C. Dairy farm wastewater treatment using horizontal subsurface flow wetlands with Typha domingensis and different substrates. Environmental Technology (United Kingdom), v. 38, n. 2, p. 192–198, 2016. DOI: http://dx.doi.org/10.1080/09593330.2016.1231228.

SCHIERANO, M. C.; PANIGATTI, M. C.; MAINE, M. A. Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater. International Journal of Phytoremediation, v. 20, n. 9, p. 895–900, 2018. DOI: https://doi.org/10.1080/15226514.2018.1438361.

SHIGUNOV NETO, A. S. Panorama da pesquisa em formação de professores: uma análise do que se publica na Revista Brasileira da Educação Profissional e Tecnológica (RBEPT). Revista Brasileira da Educação Profissional e Tecnológica (RBEPT). v. 2, 2020. DOI: 10.15628/rbept.2020.11076

SCHINDLER, D. W. The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B, v. 279, p. 4322-4333, 2012. DOI:10.1098/rspb.2012.1032

SCOPUS, 2023. Disponível em: https://service.elsevier.com/app/answers/detail/a_id/15100/c/10544/supporthub/scopus/. Acesso em 17 fev. 2023.

SOUZA, J. S.; PEDROSA, P.; GATTS, P. V.; GRAVINA, G. A. Application of concentrations and proportions of nutrients in the diagnosis of eutrophication. Revista Vértices, v. 16, n. 1, p. 199–218, 2014. DOI: 10.5935/1809-2667.20140013

SØVIK, A. K.; KLØVE, B. Phosphorus retention processes in shell sand filter systems treating municipal wastewater. Ecological Engineering, v. 25, n. 2, p. 168–182, 2005. DOI: https://doi.org/10.1016/j.ecoleng.2005.04.007

TIAN, T.; TAM, N. F. Y.; ZAN, Q.; CHEUNG, S. G.; SHIN, P. K. S.; WONG, Y. S.; ZHANG, L.; CHEN, Z. Performance and bacterial community structure of a 10-years old constructed mangrove wetland. Marine Pollution Bulletin, v. 124, n. 2, p. 1096–1105, 2017. DOI: http://dx.doi.org/10.1016/j.marpolbul.2017.07.005.

VYMAZAL, J. Constructed wetlands for wastewater treatment. Water (Switzerland), v. 2, n. 3, p. 530–549, 2010. DOI: 10.1016/j.ecoleng.2005.07.002

VYMAZAL, J. Removal of nutrients in constructed wetlands for wastewater treatment through plant harvesting – Biomass and load matter the most. Ecological Engineering, v. 155, p. 105962, 2020. DOI: https://doi.org/10.1016/j.ecoleng.2020.105962

VYMAZAL J.; KROPFELOVA, L. Wastewater treatment in constructed wetlands with horizontal sub-surface flow, vol. 14. Dordrecht: Springer, 2008.

WANG, R.; ZHAO, X.; LIU, H.; WU, H. Elucidating the impact of influent pollutant loadings on pollutants removal in agricultural waste-based constructed wetlands treating low C/N wastewater. Bioresource Technology, v. 273, p. 529–537, 2019. DOI: https://doi.org/10.1016/j.biortech.2018.11.044

WANG, W.; WANG, X.; ZHOU, L.; LIU, H.; DING, Z.; LIANG, Y. Wastewater treatment in a constructed wetland followed by an oxidation pond in a rural area of China. Environmental Engineering and Management Journal, v. 15, n. 1, p. 199–205, 2016. DOI: 10.30638/eemj.2016.022.

WITHERS, P. J. A. Closing the phosphorus cycle. Nature Sustainability, 2019. DOI: https://doi.org/10.1038/s41893-019-0428-6

XU, J.; ZHAO, G.; HUANG, X.; GUO, H.; LIU, W. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater. International Journal of Phytoremediation, v. 19, n. 3, p. 262–269, 2016. DOI: http://dx.doi.org/10.1080/15226514.2016.1217392

XU, R.; ZHANG, Y.; LIU, R.; CAO, Y.; WANG, G.; JI, L.; XU, Y. Effects of different substrates on nitrogen and phosphorus removal in horizontal subsurface flow constructed wetlands. Environmental Science and Pollution Research, v. 26, n. 16, p. 16229–16238, 2019. DOI: https://doi.org/10.1007/s11356-019-04945-1.

YUAN, Z.; FU, S.; XU, X., WENDLING, L. Mineral Processing Residue Use as Substrate in a Modular Engineered Wetland for Wastewater Treatment. Environmental Processes, v. 4, n. 3, p. 523–547, 2017. DOI: https://doi.org/10.1007/s40710-017-0247-6

ZHAO, J.; ZHAO, Y.; XU, Z.; DOHERTY, L.; LIU, R. Highway runoff treatment by hybrid adsorptive media-baffled subsurface flow constructed wetland. Ecological Engineering, v. 91, p. 231–239, 2016. DOI: http://dx.doi.org/10.1016/j.ecoleng.2016.02.020.

Archivos adicionales

Publicado

2023-07-06

Cómo citar

Almeida Copati, E., Fontana, L., & Araujo de Jesus, T. (2023). Eliminación de fósforo de las aguas residuales mediante sistemas de humedales construidos de flujo subsuperficial horizontal: revisión bibliométrica y bibliográfica (2016 - 2021). Revista Brasileira De Iniciação Científica, 10, e023018. Recuperado a partir de https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/672