Remoção de fósforo de águas residuárias por sistemas de alagados construídos de fluxo subsuperficial horizontal
revisão bibliométrica e bibliográfica (2016 - 2021)
Palavras-chave:
Eutrofização. Macrófita. Material suporte. Nutriente. Tratamento de esgoto.Resumo
O presente estudo teve como objetivo avaliar a remoção de fósforo total (PT) de efluentes por Sistemas de Alagados Construídos (SACs) de fluxo subsuperficial horizontal por meio de revisão bibliométrica e bibliográfica (últimos 5 anos). Foi utilizada a base Scopus. A China foi o país que mais publicou sobre o assunto, com 17 dos 34 artigos obtidos. O substrato mais frequente e com maior eficiência de remoção de PT (100%) foi o cascalho. A macrófita mais frequente foi a Phragmites australis. Porém, a espécie que apresentou a maior eficiência de remoção de PT foi a Typha domingensis.
Downloads
Referências
ANGASSA, K.; LETA, S.; MULAT, W.; KLOSS, H.; MEERS, E. Evaluation of Pilot-Scale Constructed Wetlands with Phragmites karka for Phytoremediation of Municipal Wastewater and Biomass Production in Ethiopia. Environmental Processes, v. 6, n. 1, p. 65–84, 2019. DOI: https://doi.org/10.1007/s40710-019-00358-x.
ANH, B. T. K.; THANH, N. V.; PHUONG, N. M.; HA, N. T. H.; YEN, N. H.; LAP, B. Q.; KIM, D.D. Selection of Suitable Filter Materials for Horizontal Subsurface Flow Constructed Wetland Treating Swine Wastewater. Water, Air, and Soil Pollution, v. 231, n. 2, 2020. DOI: https://doi.org/10.1007/s11270-020-4449-6.
BALDOVI, A. A.; AGUIAR, A. R. B.; BENASSI, R. F.; VYMAZAL, J.; JESUS, T. A. Phosphorus removal in a pilot scale free water surface constructed wetland: hydraulic retention time, seasonality and standing stock evaluation. Chemosphere, v. 266, p. 12839, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.128939
BEAULIEU, J. J.; DELSONTRO T.; DOWNING, J. A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications, v. 10, p. 1375, 2019. DOI: https://doi.org/10.1038/s41467-019-09100-5
BENASSI, R. F.; MATHEUS, D. R.; SUBTIL, E. L.; COELHO, L. H. G.; OLIVEIRA, L. H. S.; MORETTO, M. R. D.; JESUS, T. A.; PAGANINI, W. S.; BALDOVI, A. A.; SANCHEZ, A. A.; STOPA, J. M. Manual de sistemas de Wetlands construídas para o tratamento de esgotos sanitário: implantação, operação e manutenção. Santo André: UFABC, 2018. ISBN: 978-85-65212-85-4
BOLTON, L.; JOSEPH, S.; GREENWAY, M.; DONNE, S.; MUNROE, P.; MARJO, C. E. Phosphorus adsorption onto an enriched biochar substrate in constructed wetlands treating wastewater. Ecological Engineering, v. 1, p. 100005, 2019. DOI: https://doi.org/10.1016/j.ecoena.2019.100005
CANDIDO, M. R.; CAMPOS, L. A. Pandemia reduz submissões de artigos acadêmicos assinados por mulheres. Blog DADOS, 2020. Disponível em: http://dados.iesp.uerj.br/pandemia-reduz-submissoes-de-mulheres/. Acesso em 17 fev. 2023.
CAO, Z.; ZHOU, L.; GAO, Z.; HUANG, Z.; JIAO, X.; ZHANG, Z.; MA, K.; DI, Z.; BAI, Y. Comprehensive benefits assessment of using recycled concrete aggregates as the substrate in constructed wetland polishing effluent from wastewater treatment plant. Journal of Cleaner Production, v. 288, p. 125551, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.125551.
CHAKRABORTI, R. K.; BAYS, J. S. Natural treatment of high-strength reverse osmosis concentrate by constructed wetlands for reclaimed water use. Water (Switzerland), v. 12, n. 1, 2020. DOI: https://doi.org/10.3390/w12010158.
DE LA MORA-OROZCO, C. GONZÁLEZ-ACUÑA, I. J.; SAUCEDO-TERÁN, R. A.; FLORES-LÓPEZ, H. E.; RUBIO-ARIAS, H. O.; OCHOA-RIVERO, J. M. Removing organic matter and nutrients from pig farm wastewater with a constructed wetland system. International Journal of Environmental Research and Public Health, v. 15, n. 5, 2018. DOI: https://doi.org/10.3390/ijerph15051031.
DELGADO-GONZÁLEZ, L.; PROST-BOUCLE, S.; TROESCH, S.; MOLLE, P. Granulated apatite filters for phosphorous retention in treatment wetlands: Experience from full-scale applications. Journal of Water Process Engineering, v. 40, 2021. DOI: https://doi.org/10.1016/j.jwpe.2021.101927
DELL'OSBEL, N.; COLARES, G. S.; OLIVEIRA, G. A.; RODRIGUES, L. R.; SILVA, F. P.; RODRIGUEZ, A. L.; LÓPEZ, D. A. R.; LUTTERBECK, C. A.; SILVEIRA, E. O.; KIST, L. T.; MACHADO, E. L. Hybrid constructed wetlands for the treatment of urban wastewaters: Increased nutrient removal and landscape potential. Ecological Engineering, v. 158, n. 158, p. 106072, 2020. DOI: https://doi.org/10.1016/j.ecoleng.2020.106072
DIRES, S.; BIRHANU, T.; AMBELU, A. Use of broken brick to enhance the removal of nutrients in subsurface flow constructed wetlands receiving hospital wastewater. Water Science and Technology, v. 79, n. 1, p. 156–164, 2019. DOI: https://doi.org/10.2166/wst.2019.037.
DODDS, W. K. The Role of Periphyton in Phosphorus Retention in Shallow Freshwater Aquatic Systems. Journal of Phycology, v. 39, n. 5, p. 840–849, 2003. DOI: 10.1046/j.1529-8817.2003.02081.x
FAHIM, R.; LU, X.; JILANI, G.; HUSSAIN, J.; HUSSAIN, I. Comparison of floating-bed wetland and gravel filter amended with limestone and sawdust for sewage treatment. Environmental Science and Pollution Research, v. 26, n. 20, p. 20400–20410, 2019. DOI: https://doi.org/10.1007/s11356-019-05325-5.
GAO, Y.; XIE, Y. W.; ZHANG, Q.; WANG, A. L.; YU, Y. X.; YANG, L. Y. Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland. Water Research, v. 108, p. 39–45, 2017. DOI: http://dx.doi.org/10.1016/j.watres.2016.10.033.
GAO, Y.; YAN, C.; WEI, R.; ZHANG, W.; SHEN, J.; WANG, M.; GAO, B.; YANG, Y.; YANG, L. Photovoltaic electrolysis improves nitrogen and phosphorus removals of biochar-amended constructed wetlands. Ecological Engineering, v. 138, n. April, p. 71–78, 2019. DOI: https://doi.org/10.1016/j.ecoleng.2019.07.004.
GAO, Y.; ZHANG, W.; GAO, B.; JIA, W.; MIAO, A.; XIAO, L.; YANG, L. Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar. Water Research, v. 139, p. 301–310, 2018. DOI: https://doi.org/10.1016/j.watres.2018.04.007.
GARCÍA-VALERO, A.; MARTÍNEZ-MARTÍNEZ, S.; FAZ, A.; TERRERO, M. A.; MUÑOZ, M. A.; GÓMEZ-LÓPEZ, M. D.; ACOSTA, J. A. Treatment of wastewater from the tannery industry in a constructed wetland planted with phragmites australis. Agronomy, v. 10, n. 2, p. 1–15, 2020. DOI: https://doi.org/10.3390/agronomy10020176
GUIMARÃES, A. J. R.; MOREIRA, P. S.C.; BEZERRA, C. A. Modelos de inovação: Análise bibliométrica da produção científica. Brazilian Journal of Information Science: Research trends. v. 15, 2021. DOI: doi.org/10.36311/1981.1640.2001.v15.e02106
JONES, F. A ameaça dos microsplásticos. Revista pesquisa FAPESP, 2019. Edição 281. Disponível em <https://revistapesquisa.fapesp.br/a-ameaca-dos-microplasticos/>. Acesso em 3 de junho de 2022.
LE MOAL, M.; GASCUEL-ODOUX, C.; MÉNESGUEN, A.; SOUCHON, Y.; ÉTRILLARD, C.; LEVAIN, A.; MOATAR, F.; PANNARD, A.; SOUCHU, P.; LEFEBVRE, A.; PINAY, G. Eutrophication: A new wine in an old bottle? Science of The Total Environment, v. 651, p. 1-11, 2019. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.139
LIMA, R. A. de; VELHO, L. M. L. S.; FARIA, L. I. L. de. Análise cientométrica da atividade científica na área de solos: o caso da América Latina. Embrapa Solos. v. 172, 2011.
LIU, H.; HU, Z.; JIANG, L.; ZHUANG, L.; HAO, L.; NIE, L. Roles of carbon source-derived extracellular polymeric substances in solids accumulation and nutrient removal in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, v. 362, p. 702–711, 2019. DOI: https://doi.org/10.1016/j.cej.2019.01.067.
MACHADO, A. I.; BERETTA, M.; FRAGOSO, R; DUARTE, E. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. Journal of Environmental Management, v. 187, p. 560–570, 2017. DOI: https://doi.org/10.1016/j.jenvman.2016.11.015.
MARONEZE, M. M.; ZEPKA, L. Q.; VIEIRA, J. G.; QUEIROZ, M. I.; JACOB-LOPES, E. A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais. Revista Ambiente e Água, v. 9, n. 3, p. 445–458, 2014. DOI: 10.4136/ambi-agua.1403
MCCUNE, B.; MEFFORD, M. J. PC-ORD. Multivariate analysis of ecological data. Gleneden Beach, Oregon: MjM Software, 2011.
MENDONÇA, H. V.; RIBEIRO, C. B. M.; BORGES, A. C.; BASTOS, R. R. Remoção de nitrogênio e fósforo de águas residuárias de laticínios por sistemas alagados construídos operando em bateladas. Revista Ambiente e Água, v. 7, n. 2, p. 75–87, 2012. DOI: http://dx.doi.org/10.4136/ambi-agua.805
MESQUITA, C.; ALBUQUERQUE, A.; AMARAL, L.; NOGUERIA, R. Effectiveness and temporal variation of a full-scale horizontal constructed wetland in reducing nitrogen and phosphorus from domestic wastewater. ChemEngineering, v. 2, n. 1, p. 1–14, 2018. DOI: https://doi.org/10.3390/chemengineering2010003.
METALI, H. M. K. H.; GUO, Z. R.; DURAMAN, S. B. Removal of various pollutants using constructed wetland with selected plants in humid tropical areas. IET Conference Publications, v. 2018, n. CP750, 2018. DOI: 10.1049/cp.2018.1512.
MITSCH, W. J. Landscape design and the role of created, restored, and natural riparian wetlands in controlling nonpoint source pollution. Ecological Engineering, v. 1 (1−2), p. 27−47, 1992. DOI: https://doi.org/10.1016/0925-8574(92)90024-V
MIRANDA, S. T.; MATOS, A. T.; MATOS, M. P.; SARAIVA, C. Efficiency of horizontal subsurface flow-constructed wetlands considering different support materials and the cultivation positions of plant species. Revista Ambiente e Água, v. 15, n. 2, 2020. DOI: https://doi.org/10.4136/ambi-agua.2476
NGUYEN, T. A. H.; NGO, H. H.; GUO, W. S.; NGUYEN, T. H. H.; SODA, S.; VU, N. D.; BUI, T. K. A.; VO, T. D. H.; BUI, T. T.; NGUYEN, T. T.; PHAM, T. T. White hard clam (Meretrix lyrata) shells media to improve phosphorus removal in lab-scale horizontal sub-surface flow constructed wetlands: Performance, removal pathways, and lifespan. Bioresource Technology, v. 312, n. May, 2020. DOI: https://doi.org/10.1016/j.biortech.2020.123602
NI, L.; XU, J; CHU, J.; LI, S.; WANG, P.; LI, Y.; LI, Y.; ZHU, L.; WANG, C. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater. Bulletin of Environmental Contamination and Toxicology, v. 97, n. 1, p. 131–137, 2016. DOI: 10.1007/s00128-016-1844-1.
NI, Q.; WANG, T.; LIAO, J.; SHI, W.; HUANG, Z.; MIAO, H.; WU, P.; RUAN, W. Operational performances and enzymatic activities for eutrophic water treatment by vertical-flow and horizontal-flow constructed wetlands. Water (Switzerland), v. 12, n. 7, 2020. DOI: 10.3390/w12072007.
NONGMAITHEM, A.; RADHIKA, B. Assessment of secondary treatment efficiency of dairy wastewater using pilot constructed wetland with hair waste modified substrate. Indian Journal of Science and Technology, v. 9, n. 39, 2016. DOI: 10.17485/ijst/2016/v9i39/100779
SAEED, T.; MIAH, M. J.; MAJED, N.; HASAN, M.; KHAN, T. Pollutant removal from landfill leachate employing two-stage constructed wetland mesocosms: co-treatment with municipal sewage. Environmental Science and Pollution Research, v. 27, n. 22, p. 28316–28332, 2020. DOI: https://doi.org/10.1007/s11356-020-09208-y.
SANCHEZ, A. A.; FERREIRA, A. C.; STOPA, J. M.; BELLATO, F. C.; JESUS, T. A.; COELHO, L. H. G.; DOMINGUES, M. R.; SUBTIL, E. L.; MATHEUS, D. R.; BENASSI, R. F. Organic Matter, Turbidity, and Apparent Color Removal in Planted (Typha sp. and Eleocharis sp.) and Unplanted Constructed Wetlands. Journal of Environmental Engineering, v. 144, p. 06018007, 2018. DOI: 10.1061/(ASCE)EE.1943-7870.0001443
SCHIERANO, M. C.; MAINE, M. A.; PANIGATTI, M. C. Dairy farm wastewater treatment using horizontal subsurface flow wetlands with Typha domingensis and different substrates. Environmental Technology (United Kingdom), v. 38, n. 2, p. 192–198, 2016. DOI: http://dx.doi.org/10.1080/09593330.2016.1231228.
SCHIERANO, M. C.; PANIGATTI, M. C.; MAINE, M. A. Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater. International Journal of Phytoremediation, v. 20, n. 9, p. 895–900, 2018. DOI: https://doi.org/10.1080/15226514.2018.1438361.
SHIGUNOV NETO, A. S. Panorama da pesquisa em formação de professores: uma análise do que se publica na Revista Brasileira da Educação Profissional e Tecnológica (RBEPT). Revista Brasileira da Educação Profissional e Tecnológica (RBEPT). v. 2, 2020. DOI: 10.15628/rbept.2020.11076
SCHINDLER, D. W. The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B, v. 279, p. 4322-4333, 2012. DOI:10.1098/rspb.2012.1032
SCOPUS, 2023. Disponível em: https://service.elsevier.com/app/answers/detail/a_id/15100/c/10544/supporthub/scopus/. Acesso em 17 fev. 2023.
SOUZA, J. S.; PEDROSA, P.; GATTS, P. V.; GRAVINA, G. A. Application of concentrations and proportions of nutrients in the diagnosis of eutrophication. Revista Vértices, v. 16, n. 1, p. 199–218, 2014. DOI: 10.5935/1809-2667.20140013
SØVIK, A. K.; KLØVE, B. Phosphorus retention processes in shell sand filter systems treating municipal wastewater. Ecological Engineering, v. 25, n. 2, p. 168–182, 2005. DOI: https://doi.org/10.1016/j.ecoleng.2005.04.007
TIAN, T.; TAM, N. F. Y.; ZAN, Q.; CHEUNG, S. G.; SHIN, P. K. S.; WONG, Y. S.; ZHANG, L.; CHEN, Z. Performance and bacterial community structure of a 10-years old constructed mangrove wetland. Marine Pollution Bulletin, v. 124, n. 2, p. 1096–1105, 2017. DOI: http://dx.doi.org/10.1016/j.marpolbul.2017.07.005.
VYMAZAL, J. Constructed wetlands for wastewater treatment. Water (Switzerland), v. 2, n. 3, p. 530–549, 2010. DOI: 10.1016/j.ecoleng.2005.07.002
VYMAZAL, J. Removal of nutrients in constructed wetlands for wastewater treatment through plant harvesting – Biomass and load matter the most. Ecological Engineering, v. 155, p. 105962, 2020. DOI: https://doi.org/10.1016/j.ecoleng.2020.105962
VYMAZAL J.; KROPFELOVA, L. Wastewater treatment in constructed wetlands with horizontal sub-surface flow, vol. 14. Dordrecht: Springer, 2008.
WANG, R.; ZHAO, X.; LIU, H.; WU, H. Elucidating the impact of influent pollutant loadings on pollutants removal in agricultural waste-based constructed wetlands treating low C/N wastewater. Bioresource Technology, v. 273, p. 529–537, 2019. DOI: https://doi.org/10.1016/j.biortech.2018.11.044
WANG, W.; WANG, X.; ZHOU, L.; LIU, H.; DING, Z.; LIANG, Y. Wastewater treatment in a constructed wetland followed by an oxidation pond in a rural area of China. Environmental Engineering and Management Journal, v. 15, n. 1, p. 199–205, 2016. DOI: 10.30638/eemj.2016.022.
WITHERS, P. J. A. Closing the phosphorus cycle. Nature Sustainability, 2019. DOI: https://doi.org/10.1038/s41893-019-0428-6
XU, J.; ZHAO, G.; HUANG, X.; GUO, H.; LIU, W. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater. International Journal of Phytoremediation, v. 19, n. 3, p. 262–269, 2016. DOI: http://dx.doi.org/10.1080/15226514.2016.1217392
XU, R.; ZHANG, Y.; LIU, R.; CAO, Y.; WANG, G.; JI, L.; XU, Y. Effects of different substrates on nitrogen and phosphorus removal in horizontal subsurface flow constructed wetlands. Environmental Science and Pollution Research, v. 26, n. 16, p. 16229–16238, 2019. DOI: https://doi.org/10.1007/s11356-019-04945-1.
YUAN, Z.; FU, S.; XU, X., WENDLING, L. Mineral Processing Residue Use as Substrate in a Modular Engineered Wetland for Wastewater Treatment. Environmental Processes, v. 4, n. 3, p. 523–547, 2017. DOI: https://doi.org/10.1007/s40710-017-0247-6
ZHAO, J.; ZHAO, Y.; XU, Z.; DOHERTY, L.; LIU, R. Highway runoff treatment by hybrid adsorptive media-baffled subsurface flow constructed wetland. Ecological Engineering, v. 91, p. 231–239, 2016. DOI: http://dx.doi.org/10.1016/j.ecoleng.2016.02.020.
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Revista Brasileira de Iniciação Científica
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.