Produção de concreto verde pela substituição parcial de pó de pedra por pet

Autores

  • Ana Luiza André
  • Isabella Carolina Conceição
  • Márcio Roberto De Freitas UNIFEI Campus de Itabira
  • Ricardo Luiz Perez Teixeira UNIFEI Campus de Itabira

Palavras-chave:

Concreto Verde. Construção Civil. PET. Pó de Pedra.

Resumo

Este artigo de iniciação científica propõe a produção e a avaliação de desempenho de concretos verdes que possuem uma substituição parcial do agregado fino de pó de pedra por resíduos de tereftalato de polietileno (PET). A produção de concreto verde objetiva minimizar a quantidade de PET pós-consumo descartados em aterros, ou incinerados, pelo seu uso como material de consumo na indústria da construção civil. Os concretos verdes produzidos com substituição parcial de 10% e de 15% de agregado miúdo de pó de pedra por PET alcançaram a resistência à compressão e densidade que possibilita os seus usos para fins estruturais.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ana Luiza André

Graduanda em engenharia na UNIFEI-Itabira. Pesquisadora de iniciação científica  no grupo de pesquisa MATCIME da UNIFEI Campus de Itabira.

Isabella Carolina Conceição

Graduanda em engenharia na UNIFEI-Itabira. Pesquisadora de iniciação científica  no grupo de pesquisa MATCIME da UNIFEI Campus de Itabira.

Márcio Roberto De Freitas, UNIFEI Campus de Itabira

Professor na UNIFEI-Itabira. Pesquisador nos grupos de pesquisa MATCIME da UNIFEI Campus de Itabira. Professor na UNIFEI- Itabira. Doutor em Ciências e Engenharia de Materiais pela UFSCAR.

Ricardo Luiz Perez Teixeira , UNIFEI Campus de Itabira

Professor na UNIFEI-Itabira. Pesquisador nos grupos de pesquisa MATCIME e GPESE da UNIFEI Campus de Itabira. Professor na UNIFEI- Itabira. Doutor em Ciências e Engenharia de Materiais pela UFRJ.

Referências

ABNT NBR 5738:2015 Versão Corrigida:2016. Concrete - Procedure for molding and curing concrete test specimens. https://www.abntcatalogo.com.br/norma.aspx?ID=357453

ABNT NBR 5739:2018. Concrete - Compression test of cylindrical specimens. https://www.abntcatalogo.com.br/norma.aspx?ID=398444

ABNT NBR 6118:2014 Versão Corrigida:2014. Design of concrete structures — Procedure. https://www.abntcatalogo.com.br/norma.aspx?ID=317027

ABNT NBR 6118:2014 Versão Corrigida:2014. Design of concrete structures — Procedure. https://www.abntcatalogo.com.br/norma.aspx?ID=317027

ABNT NBR 9781: 2013. Concrete paving units — Specification and test methods. https://www.abntcatalogo.com.br/norma.aspx?ID=194630

ABNT NBR NM 248:2003. Aggregates - Sieve analysis of fine and coarse aggregates. https://www.abntcatalogo.com.br/norma.aspx?ID=2979

ALANI, Aktham H. et al. Durability performance of a novel ultra-high-performance PET green concrete (UHPPGC). Construction and Building Materials, v. 209, p. 395-405, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.088

ASTM C127-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, 2015, www.astm.org

ASTM C143 / C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org

ASTM C143 / C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org

ASTM C150 / C150M-18, Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, West Conshohocken, PA, 2013, www.astm.org

ASTM C192 / C192M-18, Standard Practice for Making and Curing Concrete, Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C192 / C192M-18, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C39 / C39M-18, Standard Test Method for Compressive Strength of Cements, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C496 / C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2017, www.astm.org

ASTM C595 / C595M-18, Standard Specification for Blended Hydraulic Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, 2013, www.astm.org

ASTM C936 / C936M-18, Standard Specification for Solid Concrete Interlocking Paving Units, ASTM International, West Conshohocken, PA, 2018, www.astm.org

BARBERA, Antonio C.; VYMAZAL, Jan; MAUCIERI, Carmelo. Greenhouse gases formation and emission. Encyclopedia of Ecology. 2a. ed., 2019, p. 329-333. DOI: https://doi.org/10.1016/B978-0-12-409548-9.10895-4

FERREIRA, Carla Regina et al. Comparative Study About Mechanical Properties of Structural Standard Concrete and Concrete with Addition of Vegetable Fibers. Materials Research, v. 20, p. 102-107, 2017. DOI: https://dx.doi.org/10.1590/1980-5373-mr-2016-0905

FOTI, Dora. Recycled waste PET for sustainable fiber-reinforced concrete. In: Use of Recycled Plastics in Eco-Efficient Concrete. Woodhead Publishing, 2019. p. 387-410. DOI: https://doi.org/10.1016/B978-0-08-102676-2.00018-9

ISLAM, Rafiquel; HYE, Md Abdul. Metallurgical treatment processes of metals (Fe and Steel, Al, Cu, Au) and their detrimental environmental issues-A mini review. International Journal of Scientific and Research Publications, v. 8, n. 5, p. 677-679, 2018. DOI: http://dx.doi.org/10.29322/IJSRP.8.5.2018.p7782

LIEW, K. M.; SOJOBI, A. O.; ZHANG, L. W. Green concrete: Prospects and challenges. Construction and building materials, v. 156, p. 1063-1095, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.008

MC-Bauchemie. Admixture Solutions for the Ready-Mixed Concrete Industry. MC-Bauchemie Müller GmbH & Co. KG. Am Kruppwald 1-8. 46238 Bottrop. Germany, 2019. https://www.mcbauchemie.com/assets/downloads/brochures/Readymix_Concrete_Industry_ MC-Bauchemie.pdf

MC-PowerFlow 1080 - High-Performance Superplasticizer of the new MCGeneration. MC-Bauchemie Müller GmbH & Co. KG. Am Kruppwald 1-8. 46238 Bottrop. Germany. 2019. https://www.mc-bauchemie.com.br/assets/downloads/products/br/fichas_tecnicas/MCPowerFlow%201080.pdf

OBLA, Karthik H. What is green concrete?. The Indian Concrete Journal, v. 24, p. 26-28, 2009. https://www.nrmca.org/research_engineering/Documents/25.pdf

RAHIMI, R. S.; Nikbin, IM; Allahyari, H.; Habibi T., S. Sustainable approach for recycling waste tire rubber and polyethylene terephthalate (PET) to produce green concrete with resistance against sulfuric acid attack. J. Clean. Prod, v. 126, p. 166-177, 2016. DOI: https://doi.org/10.1016/j.jclepro.2016.03.074

TRENT, S. MNL32-5TH, Test Sieving Methods: Guidelines for Establishing Sieve Analysis Procedures; 5th Edition, 2014. www.astm.org

TUCKETT. R. Greenhouse Gases. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Analytical Science, 3a. ed., 2019, p. 362-372. DOI: https://doi.org/10.1016/B978-012-409547-2.14031-4

Publicado

2021-02-24

Como Citar

André, A. L., Conceição, I. C., De Freitas, M. R. ., & Teixeira , R. L. P. . (2021). Produção de concreto verde pela substituição parcial de pó de pedra por pet. Revista Brasileira De Iniciação Científica, 8, e021005. Recuperado de https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/352