A transição do setor energético para energias renováveis
uma revisão sistemática sobre os impactos 3D na geração e transmissão elétrica
Palavras-chave:
Descarbonização. Digitalização. Descentralização. Revisão. Impactos.Resumo
Este estudo realiza uma revisão sistemática e rastreamento de citações para investigar os impactos da descarbonização, digitalização e descentralização (3D) em sistemas elétricos e avaliar seus impactos, ao levar em consideração o objetivo global de minimizar mudanças climáticas. Foram identificados efeitos adversos causados pelas áreas de 3D, além de possíveis soluções para esses efeitos. Dentre as estratégias analisadas para mitigar esses impactos, destacam-se: formas de armazenamento energético, predição de fontes renováveis, controle da carga de veículos elétricos e melhorias na cibersegurança. Para todos esses itens, foram identificadas inovações em eficiência e segurança elaboradas para reduzir os impactos 3D nas redes elétricas.
Downloads
Referências
ADERIBOLE, Adedayo; ALJARWAN, Aamna; UR REHMAN, Muhammad Habib; ZEINELDIN, Hatem H.; MEZHER, Toufic; SALAH, Khaled; DAMIANI, Ernesto; SVETINOVIC, Davor. Blockchain technology for smart grids: decentralized NIST conceptual model. IEEE Access, Nova York, v. 8, p. 43177–43190, 2020. DOI: 10.1109/ACCESS.2020.2977149. Disponível em: https://ieeexplore.ieee.org/document/9018104/. Acesso em: 6 jun. 2024.
AKKAOUI, Raifa; STEFANOV, Alexandru; PALENSKY, Peter; EPEMA, Dick H. J. A taxonomy and lessons learned from blockchain adoption within the internet of energy paradigm. IEEE Access, Nova York, v. 10, p. 106708–106739, 2022. DOI: 10.1109/ACCESS.2022.3212148. Disponível em: https://ieeexplore.ieee.org/document/9911641/. Acesso em: 6 jun. 2024.
AKOBENG, A K. Understanding systematic reviews and meta-analysis. Archives of Disease in Childhood, Londres, v. 90, n. 8, p. 845–848, 2005. DOI: 10.1136/adc.2004.058230. Disponível em: https://adc.bmj.com/lookup/doi/10.1136/adc.2004.058230. Acesso em: 24 jan. 2024.
BELLIZIO, Federica; XU, Wangkun; QIU, Dawei; YE, Yujian; PAPADASKALOPOULOS, Dimitrios; CREMER, Jochen L.; TENG, Fei; STRBAC, Goran. Transition to digitalized paradigms for security control and decentralized electricity market. Proceedings of the IEEE, Nova York, v. 111, n. 7, p. 744–761, 2023. DOI: 10.1109/JPROC.2022.3161053. Disponível em: https://ieeexplore.ieee.org/document/9756414/. Acesso em: 16 set. 2023.
CAO, Zhiao; WANG, Jinkuan; ZHAO, Qiang; HAN, Yinghua; LI, Yuchun. Decarbonization scheduling strategy optimization for electricity-gas system considering electric vehicles and refined operation model of power-to-gas. IEEE Access, Nova York, v. 9, p. 5716–5733, 2021. DOI: 10.1109/ACCESS.2020.3048978. Disponível em: https://ieeexplore.ieee.org/document/9312594/. Acesso em: 16 set. 2023.
CLARK, Justin; GLASZIOU, Paul; DEL MAR, Chris; BANNACH-BROWN, Alexandra; STEHLIK, Paulina; SCOTT, Anna Mae. A full systematic review was completed in 2 weeks using automation tools: a case study. Journal of Clinical Epidemiology, Amsterdã, v. 121, p. 81–90, 2020. DOI: 10.1016/j.jclinepi.2020.01.008. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S089543561930719X. Acesso em: 4 mar. 2024.
COLLADOS-RODRIGUEZ, Carlos; CHEAH-MANE, Marc; CIFUENTES-GARCIA, Francisco; PRIETO-ARAUJO, Eduardo; GOMIS-BELLMUNT, Oriol; CORONADO, Luis; LONGAS, Carmen; SANZ, Silvia; MARTIN, Macarena; CORDON, Antonio. Integration of an MMC-HVDC link to the existing LCC-HVDC link in balearic islands based on grid-following and grid-forming operation. IEEE Transactions on Power Delivery, Nova York, v. 37, n. 6, p. 5278–5288, 2022. DOI: 10.1109/TPWRD.2022.3175251. Disponível em: https://ieeexplore.ieee.org/document/9775608/. Acesso em: 16 set. 2023.
DENHOLM, P.; MAI, T.; KENYON, RW.; KROPOSKI, B.; O’MALLEY, M. Inertia and the power grid: a guide without the spin. Golden: National Renewable Energy Laboratory, mai. 2020. DOI: 10.2172/1659820. Disponível em: http://dx.doi.org/10.2172/1659820. Acesso em: 25 jun. 2024.
DI SILVESTRE, Maria Luisa; FAVUZZA, Salvatore; SANSEVERINO, Eleonora Riva; ZIZZO, Gaetano. How decarbonization, digitalization and decentralization are changing key power infrastructures. Renewable and Sustainable Energy Reviews, Amsterdã, v. 93, p. 483–498, 2018. DOI: 10.1016/j.rser.2018.05.068. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032118304283. Acesso em: 16 jan. 2024.
DONG, Zhao Yang; ZHANG, Yuchen. Interdisciplinary vision of the digitalized future energy systems. IEEE Open Access Journal of Power and Energy, Nova York, v. 8, p. 557–569, 2021. DOI: 10.1109/OAJPE.2021.3108937. Disponível em: https://ieeexplore.ieee.org/document/9536502/. Acesso em: 16 set. 2023.
U.S DEPARTMENT OF ENERGY. Median driving range of all-electric vehicles tops 250 miles for model year 2020. EERE, Washington: Office of Energy Efficiency and Renewable Energy, 2021. Disponível em: https://www.energy.gov/eere/vehicles/articles/fotw-1167-january-4-2021-median-driving-range-all-electric-vehicles-tops-250. Acesso em: 11 nov. 2023.
ENGEL, Hauke; HENSLEY, Russell; KNUPFER, Stefan; SAHDEV, Shivika. How electric vehicles could change the load curve. Mckinsey, Nova York: Mckinsey & Company, 2018. Disponível em: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-potential-impact-of-electric-vehicles-on-global-energy-systems. Acesso em: 28 jan. 2024.
HERNANDO-GIL, Ignacio; ZHANG, Zhipeng; NDAWULA, Mike; DJOKIC, Sasa. DG Locational Incremental Contribution to Grid Supply Level. IEEE Transactions on Industry Applications, Nova York, v. 58, n. 1, p. 5–14, 2022. DOI: 10.1109/TIA.2021.3118337. Disponível em: https://ieeexplore.ieee.org/document/9562294/. Acesso em: 16 set. 2023.
HOLTTINEN, Hannele; KIVILUOMA, Juha; FLYNN, Damian; SMITH, J. Charles; ORTHS, Antje; ERIKSEN, Peter Borre; CUTULULIS, Nicolaos; SODER, Lennart; KORPAS, Magnus; ESTANQUEIRO, Ana; MACDOWELL, Jason; TUOHY, Aidan; VRANA, Til Kristian; O’MALLEY, Mark. System impact studies for near 100% renewable energy systems dominated by inverter based variable generation. IEEE Transactions on Power Systems, Nova York, v. 37, n. 4, p. 3249–3258, 2022. DOI: 10.1109/TPWRS.2020.3034924. Disponível em: https://ieeexplore.ieee.org/document/9246271/. Acesso em: 16 set. 2023.
INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE). About IEEE Xplore, 2024a. Disponível em: https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore. Acesso em: 18 jun. 2024.
INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE). Search result, 2024b. Disponível em: https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=impacts%20AND%20(decarboni%3Fation%20OR%20decentrali%3Fation%20OR%20digitali%3Fation). Acesso em: 25 dez. 2024.
JAMIL, F.; IQBAL, N.; IMRAN; AHMAD, S.; KIM, D. Peer-to-peer energy trading mechanism based on blockchain and machine learning for sustainable electrical power supply in smart grid. IEEE Access, Nova York, v. 9, p. 39193-39217, 2021. DOI: 10.1109/access.2021.3060457. Disponível em: https://ieeexplore.ieee.org/document/9358144. Acesso em: 25 jun. 2024.
KEZ, Dlzar Al; FOLEY, Aoife M.; MORROW, D. John. Analysis of fast frequency response allocations in power systems with high system non-synchronous penetrations. IEEE Transactions on Industry Applications, Nova York, v. 58, n. 3, p. 3087–3101, 2022. DOI: 10.1109/TIA.2022.3160997. Disponível em: https://ieeexplore.ieee.org/document/9739850/. Acesso em: 16 set. 2023.
KONCAR, Ilija; BAYRAM, I. Safak. A probabilistic methodology to quantify the impacts of cold weather on electric vehicle demand: a case study in the U.K. IEEE Access, Nova York, v. 9, p. 88205–88216, 2021. DOI: 10.1109/ACCESS.2021.3090534. Disponível em: https://ieeexplore.ieee.org/document/9459753/. Acesso em: 16 set. 2023.
LAZARD. Levelized cost of energy and levelized cost of storage 2018. Lazard, 2018. Disponível em: https://www.lazard.com/research-insights/levelized-cost-of-energy-and-levelized-cost-of-storage-2018/. Acesso em: 4 nov. 2023.
LEFEBVRE, Carol; GLANVILLE, Julie; BRISCOE, Simon; FEATHERSTONE, Robin; LITTLEWOOD, Anne; METZENDORF, Maria-Inti; NOEL-STORR, Anna; PAYNTER, Robin; RADER, Tamara; THOMAS, James; WIELAND, L. Susan. Technical Supplement to Chapter 4: Searching for and selecting studies. In: HIGGINS, Julian P. T.; THOMAS, James; CHANDLER, Jacqueline; CUMPSTON, Miranda; LI, Tianjin; PAGE, Matthew J.; WELCH; Vivian A (ed.). Cochrane handbook for systematic reviews of interventions. Version 6.4. Cochrane, Londres, 2023. Disponível em: www.training.cochrane.org/handbook. Acesso em: 5 fev. 2024.
LI, Shuangqi; ZHAO, Pengfei; GU, Chenghong; LI, Jianwei; CHENG, Shuang; XU, Minghao. Online battery protective energy management for energy-transportation nexus. IEEE Transactions on Industrial Informatics, Nova York, v. 18, n. 11, p. 8203–8212, 2022. DOI: 10.1109/TII.2022.3163778. Disponível em: https://ieeexplore.ieee.org/document/9745763/. Acesso em: 16 set. 2023.
MANDAL, Nitai. An approach towards citation tracking: special reference to academic and research libraries. International Journal of Information Movement, Londres, v. 2, n. 8, p. 148-152, dec. 2017. Disponível em: https://www.ijim.in/paper-23-an-approach-towards-citation-tracking-special-reference-to-academic-and-research-libraries/. Acesso em: 17 jul. 2024.
MINISTÉRIO DE MINAS E ENERGIA. Transição energética: a mudança de energia que o planeta precisa, 2023. Disponível em: https://www.gov.br/mme/pt-br/assuntos/noticias/transicao-energetica-a-mudanca-de-energia-que-o-planeta-precisa. Acesso em: 27 fev. 2024.
NAZARI-HERIS, Morteza; MIRZAEI, Mohammad Amin; MOHAMMADI-IVATLOO, Behnam; MARZBAND, Mousa; ASADI, Somayeh. Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads. Journal of Cleaner Production, Amsterdã, v. 244, p. 1-12, 2020. DOI: 10.1016/j.jclepro.2019.118769. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S095965261933639X. Acesso em: 9 fev. 2024.
NELEGA, Raluca; GREU, Dan Ioan; JECAN, Eusebiu; REDNIC, Vasile; ZAMFIRESCU, Ciprian; PUSCHITA, Emanuel; TURCU, Romulus Valeriu Flaviu. Prediction of power generation of a photovoltaic power plant based on neural networks. IEEE Access, Nova York, v. 11, p. 20713–20724, 2023. DOI: 10.1109/ACCESS.2023.3249484. Disponível em: https://ieeexplore.ieee.org/document/10054046/. Acesso em: 16 set. 2023.
POUDEL, Shiva; BLACK, Gary D.; MUKHERJEE, Monish; REIMAN, Andrew P. Multi-objective power distribution operations: characterizing conflict and system volatility. IEEE Access, Nova York, v. 11, p. 103881–103889, 2023. DOI: 10.1109/ACCESS.2023.3318267. Disponível em: https://ieeexplore.ieee.org/document/10261170/. Acesso em: 6 jun. 2024.
PUDJIANTO, Danny; STRBAC, Goran. Whole system value of long-duration electricity storage in systems with high penetration of renewables. iEnergy, Nova York, v. 1, n. 1, p. 114–123, 2022. DOI: 10.23919/IEN.2022.0004. Disponível em: https://ieeexplore.ieee.org/document/9762239/. Acesso em: 16 set. 2023.
RENEWABLE ENERGY POLICY NETWORK FOR THE 21ST CENTURY (REN21). Renewables 2023 Global Status Report: global overview, 2023. Disponível em: https://www.ren21.net/gsr-2023/modules/global_overview/. Acesso em: 15 jan. 2024.
RIVERA, Sebastian; GOETZ, Stefan M.; KOURO, Samir; LEHN, Peter W.; PATHMANATHAN, Mehanathan; BAUER, Pavol; MASTROMAURO, Rosa Anna. Charging infrastructure and grid integration for electromobility. Proceedings of the IEEE, Nova York, v. 111, n. 4, p. 371–396, 2023. DOI: 10.1109/JPROC.2022.3216362. Disponível em: https://ieeexplore.ieee.org/document/9940564/. Acesso em: 16 set. 2023.
ROGELJ, Joeri; ELZEN, Michel Den; HÖHNE, Niklas; FRANSEN, Taryn; FEKETE, Hanna; WINKLER, Harald; SCHAEFFER, Roberto; SHA, Fu; RIAHI, Keywan; MEINSHAUSEN, Malte. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, Londres, v. 534, n. 7609, p. 631–639, 2016. DOI: 10.1038/nature18307. Disponível em: https://www.nature.com/articles/nature18307. Acesso em: 19 out. 2023.
SAHOO, Subrat; TIMMANN, Pascal. Energy Storage Technologies for Modern Power Systems: A detailed analysis of functionalities, potentials, and impacts. IEEE Access, Nova York, v. 11, p. 49689–49729, 2023. DOI: 10.1109/ACCESS.2023.3274504. Disponível em: https://ieeexplore.ieee.org/document/10121760/. Acesso em: 16 set. 2023.
SONG, Jie; HE, Guannan; WANG, Jianxiao; ZHANG, Pingwen. Shaping future low-carbon energy and transportation systems: Digital technologies and applications. iEnergy, Nova York, v. 1, n. 3, p. 285–305, 2022. DOI: 10.23919/IEN.2022.0040. Disponível em: https://ieeexplore.ieee.org/document/9954284/. Acesso em: 6 jun. 2024.
SONG, Yonghua; SHAHIDEHPOUR, Mohammad; RAHMAN, Saifur; BRANDON, Nigel; KAI, Strunz; LIN, Jin; ZHAO, Yuxuan. Utilization of energy storage and hydrogen in power and energy systems: viewpoints from five aspects. CSEE Journal of Power and Energy Systems, Nova York, v. 9, n.1 , p. 1-7, 2023. DOI: 10.17775/CSEEJPES.2022.08320. Disponível em: https://ieeexplore.ieee.org/document/10026205. Acesso em: 16 set. 2023.
SOUTAR, Iain. Dancing with complexity: Making sense of decarbonisation, decentralisation, digitalisation and democratisation. Energy Research & Social Science, v. 80, n. 102230, 2021. DOI 10.1016/j.erss.2021.102230. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2214629621003236. Acesso em: 5 jan. 2025.
STRBAC, Goran; PAPADASKALOPOULOS, Dimitrios; CHRYSANTHOPOULOS, Nikolaos; ESTANQUEIRO, Ana; ALGARVIO, Hugo; LOPES, Fernando; DE VRIES, Laurens; MORALES-ESPANA, German; SIJM, Jos; HERNANDEZ-SERNA, Ricardo; KIVILUOMA, Juha; HELISTO, Niina. Decarbonization of electricity systems in europe: market design challenges. IEEE Power and Energy Magazine, Nova York, v. 19, n. 1, p. 53–63, 2021. DOI 10.1109/MPE.2020.3033397. Disponível em: https://ieeexplore.ieee.org/document/9318571/. Acesso em: 9 fev. 2024.
TAYYEBI, Ali; GROSS, Dominic; ANTA, Adolfo; KUPZOG, Friederich; DORFLER, Florian. Frequency stability of synchronous machines and grid-forming power converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, Nova York, v. 8, n. 2, p. 1004–1018, 2020. DOI: 10.1109/JESTPE.2020.2966524. Disponível em: https://ieeexplore.ieee.org/document/8959148/. Acesso em: 9 fev. 2024.
TIRUNAGARI, Sridevi; GU, Mingchen; MEEGAHAPOLA, Lasantha. Reaping the benefits of smart electric vehicle charging and vehicle-to-grid technologies: regulatory, policy and technical aspects. IEEE Access, Nova York, v. 10, p. 114657–114672, 2022. DOI: 10.1109/ACCESS.2022.3217525. Disponível em: https://ieeexplore.ieee.org/document/9931106/. Acesso em: 16 set. 2023.
UNITED NATIONS. The Sustainable Development Goals Report 2022. 2022. Disponível em: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf. Acesso em: 20 mar. 2024.
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Sources of Greenhouse Gas Emissions. 2023. Disponível em: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. Acesso em: 29 nov. 2023.
WAGNER, O.; GÖTZ, T. Presentation of the 5Ds in Energy Policy: A Policy Paper to Show How Germany Can Regain Its Role as a Pioneer in Energy Policy. Energies, v. 14, n. 20, 18 out. 2021. DOI: 10.3390/en14206799. Disponível em: https://www.mdpi.com/1996-1073/14/20/6799. Acesso em: 7 jan. 2025.
WU, Dan; SEO, Gab-Su; XU, Lie; SU, Chi; KOCEWIAK, Lukasz; SUN, Yin; QIN, Zian. Grid integration of offshore wind power: standards, control, power quality and transmission. IEEE Open Journal of Power Electronics, Nova York, v. 5, p. 583–604, 2024. DOI: 10.1109/OJPEL.2024.3390417. Disponível em: https://ieeexplore.ieee.org/document/10504957/. Acesso em: 6 jun. 2024.
XIE, Le; ZHENG, Xiangtian; SUN, Yannan; HUANG, Tong; BRUTON, Tony. Massively digitized power grid: opportunities and challenges of use-inspired AI. Proceedings of the IEEE, Nova York, v. 111, n. 7, p. 762–787, 2023. DOI: 10.1109/JPROC.2022.3175070. Disponível em: https://ieeexplore.ieee.org/document/9803820/. Acesso em: 16 set. 2023.
ZHONGTUO, S.; YAO, W.; ZHOUPING, L.; ZENG, L.; ZHAO, Y.; ZHANG, R.; TANG, Y.; WEN, J. Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy, Amsterdã, v. 278, p. 1-25, nov. 2020. DOI: 10.1016/j.apenergy.2020.115733. Disponível em: https://www.sciencedirect.com/science/article/pii/S0306261920312228. Acesso em: 25 jun. 2024.
ZOGRAFOPOULOS, Ioannis; HATZIARGYRIOU, Nikos D.; KONSTANTINOU, Charalambos. Distributed energy resources cybersecurity outlook: vulnerabilities, attacks, impacts, and mitigations. IEEE Systems Journal, Nova York, v. 17, n. 4, p. 6695–6709. DOI: 10.1109/JSYST.2023.3305757. Disponível em: https://ieeexplore.ieee.org/document/10238347/. Acesso em: 6 jun. 2024.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista Brasileira de Iniciação Científica

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.