Estudo da síntese de óxidos nanoestruturados pela via sol-gel em solução não-aquosa

Autores

  • Antonio Capanema Guerra Galvão Pontifícia Universidade Católica do Rio de Janeiro
  • Natasha Midori Suguihiro Pontifícia Universidade Católica do Rio de Janeiro
  • Eduardo de Albuquerque Brocchi Pontifícia Universidade Católica do Rio de Janeiro

Palavras-chave:

Sol-Gel. Não-Aquoso. Óxidos. Nanopartículas.

Resumo

O método sol-gel não-aquoso oferece uma simples e eficiente alternativa para a síntese de óxidos nanoestruturados com aplicações em fotocatálise, remoção magnética, entre outras. Partindo de diferentes precursores, estudou-se a formação dos óxidos metálicos correspondentes através da reação com os solventes orgânicos não poluentes álcool benzílico e trietilenoglicol. Os produtos foram caracterizados via difração de raios-X, microscopia eletrônica de transmissão e espectroscopia de infravermelho.

Downloads

Não há dados estatísticos.

Referências

1 - FIERRO, J. L. G. Metal Oxides: Chemistry and Applications. Florida: CRC Press, 2005, 808p.

2 - GALVÃO, A. et al. Síntese e Obtenção de Nanocompósito Constituído de uma Matriz Metálica Ni-Co e Nanopartículas de Alumina. Disponível em:

http://searchentmme.yang.art.br/?wpfb_s=S%C3%ADntese+e+Obten%C3%A7%C3%A3o+de+Nanocomp%C3%B3sito+Constitu%C3%ADdo+de+uma+Matriz+Met%C3%A1lica+Ni-Co+e+Nanopart%C3%ADculas+de+Alumina. Acesso em: 27 de jul. 2016.

3 - NIEDERBERGER, M. Nonaqueous Sol-Gel Routes to Metal Oxide Nanoparticles. Acc. Chem. Res. 2007, v.40, p. 793-800.

4 - NIEDERBERGER, M.; GARNWEITNER, G. Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles. Chem. Eur. J. 2006, v.12, p. 7282-7302.

5 - NIEDERBERGER, M.; PINNA, N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application. Londres: Springer, 2009, 230p.

6 - NIEDERBERGER, M. et al. A General Soft-Chemistry Route to Perovskites and Related Materials: Synthesis of BaTiO3, BaZrO3, and LiNbO3 Nanoparticles. Angew. Chem. Int. Ed. 2004, v.43, p. 2270-2273.

7 - NIEDERBERGER, M. et al. Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation. J. Am. Chem. Soc. 2004, v.126, p. 9120-9126.

8 - PINNA, N. et al. Synthesis of yttria-based crystalline and lamellar nanostructures and their formation mechanism. Small. 2005, v.1, p. 112-121.

9 - GARNWEITNER, G. Nonaqueous Synthesis of Transition-Metal Oxide Nanoparticles and Their Formation Mechanism. Potsdam, 2005. 170p. Tese de Doutorado (Especialização em química coloide) - Universidade de Potsdam.

10 - GRABS, I. M. et al. Formation mechanism of iron oxide nanoparticles in different nonaqueous media. Cryst. Growth Des. 2012, v.12, p. 1469-1475.

11 - KRAKEN, M. et al. Formation of magnetic nanoparticles studied during the initial synthesis stage. Hyperfine Interact. 2014, v.224, n.1, p. 57-63.

12 - MASTHOFF, I. C. et al. Study of the growth process of magnetic nanoparticles obtained via the non-aqueous sol-gel method. J. Mater. Sci. 2014, v.49, n.14, p. 4705-4714.

13 - MASTHOFF, I. C. et al. Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol-gel method. J. Sol-Gel Sci. Technol. 2016, v.77, n.3, p. 553-564.

14 - CUI, H. et al. Structure switch between α-Fe2O3, ɣ-Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol. 2013, v.24, n,1, p. 93-97.

15 - HONG, Z. S. et al. A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater. Lett. 2002, v.52, p. 34-38.

16 - YU, X. et al. Effective band gap reduction of titanium oxide semiconductors by codoping from first-principles calculations. Int. J. Quantum Chem. 2013, v.113, p. 2546-2553.

17 - KALATHIL, S. et al. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale. 2013, v.5, p. 6323-6326.

18 - KHAN, H.; BERK, D. Synthesis, physicochemical properties and visible light photocatalytic studies of molybdenum, iron and vanadium doped titanium dioxide. Reac. Kinet. Mech. Cat. 2014, v.111, p. 393-414.

19 - AZONANO. Copper Oxide (CuO) Nanoparticles: Properties, Applications. Disponível em: http://www.azonano.com/article.aspx?ArticleID=3395. Acesso em: 19 de jul. 2016.

20 - BUONSANTI, R. et al. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic gamma-Fe2O3 spherical domain. J. Am. Chem. Soc. 2006, v.128, n.51, p. 16953–16970.

21 - LEE, I. S. et al. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 2006, v.128, n.33, p. 10658–10659.

22 - YAO, G. et al. Direct reduction of copper oxide into copper under hydrothermal conditions. Res. Chem. Intermed. 2011, v.37, p. 351-358.

23 - CHUI, Jon. Pictorial Guide to Interpreting Infrared Spectra. Disponível em: http://www.jon.hk/2010/09/pictorial-guide-to-interpreting-infrared-spectra. Acesso em: 24 de jul. 2016.

24 - HANSON, John. Characteristic IR Absorption Frequencies of Organic Functional Groups. Disponível em:

http://www2.ups.edu/faculty/hanson/Spectroscopy/IR/IRfrequencies.html. Acesso em: 24 de jul. 2016.

Downloads

Publicado

2026-01-09

Como Citar

Galvão, A. C. G., Suguihiro, N. M., & Brocchi, E. de A. (2026). Estudo da síntese de óxidos nanoestruturados pela via sol-gel em solução não-aquosa. Revista Brasileira De Iniciação Científica, 3(7), PDF. Recuperado de https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/2783

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.