Hippocampal neuroplasticity in animal models of Huntington's disease

integrative review

Authors

  • Pamela Sophya Costa Ribeiro Universidade Federal de Santa Catarina
  • Claudia Daniele Bianco Universidade Federal de Santa Catarina
  • Patricia de Souza Brocardo Universidade Federal de Santa Catarina

Keywords:

Huntington disease, Hippocampus, Neurogenesis, Neuroplasticity

Abstract

Huntington's disease (HD) is a genetic neurodegenerative disease caused by a CAG trinucleotide repeats in the gene encoding the huntingtin protein. Symptoms include motor deficits, depression, and cognitive deficits. Pre-clinical and clinical research seeks to understand the pathological mechanisms associated with genetic factors to propose therapeutic strategies for HD control. The striatum is the brain region most studied in HD. However, it is known that the hippocampus is also involved in this disease. Therefore, this study aimed to review the literature on research that studied the relationship between HD and the hippocampus.

Downloads

Download data is not yet available.

Author Biographies

Pamela Sophya Costa Ribeiro, Universidade Federal de Santa Catarina

Undergraduate student in the third phase of the Psychology course at the Federal University of Santa Catarina - UFSC. She is currently a Scientific Initiation fellow at the Neuroplasticity laboratory - LANEP, UFSC.

Claudia Daniele Bianco, Universidade Federal de Santa Catarina

Undergraduated in Biological Sciences - Licenciatura (2017), Master's Degree by the Post-Graduate Program in Neurosciences (2019). She is currently a PhD student in the Biochemistry Graduate Program (2019-2023). All from the Federal University of Santa Catarina - UFSC.

Patricia de Souza Brocardo, Universidade Federal de Santa Catarina

Undergraduate in Physiotherapy from Fundação Universidade Regional de Blumenau (1998), master's degree (2004) and doctorate (2008) in Neurosciences from Universidade Federal de Santa Catarina. Postdoctoral fellow at the University of Victoria in Canada, where he worked with developmental disorders and neurodegenerative diseases. She has experience in Neuropsychopharmacology, Toxicology, Morphology, Histology, and Neuroplasticity, acting on the following subjects: Neuroplasticity in neurodevelopment and neurodegeneration. In 2014 she was one of the winners of the For Women in Science award, a partnership between LOréal with Unesco in Brazil and the Brazilian Academy of Sciences (ABC). She is currently a histology professor at the Department of Morphological Sciences and a master's and doctoral advisor in the Neuroscience Graduate Program at the Federal University of Santa Catarina.

References

ANGLADA-HUGUET, M.; VIDAL, L.; GIRALT, A. et al. Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington’s disease by the induction of BDNF-dependent synaptic plasticity. Neurobiology of Disease, 2015.

APPLE, D. M.; SOLANO-FONSECA, R.; KOKOVAY, E. Neurogenesis in the Aging Brain.

Biochem PharmacoL., v. 1, n. 141, p. 77-85, out 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686327/pdf/cia-2-605.pdf. Acesso em: 27 jul 2020.

BARDE, Y.-A.; EDGAR, D.; THOENEN, H. Purification of a new neurotrophic factor from mammalian brain. The EMBO journal, v. 1, n. 5, p. 549, 1982. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC553086/pdf/emboj00297-0025.pdf. Acesso em: 27 jul 2020.

BATES, G. P. History of genetic disease: the molecular genetics of Huntington disease - a history. Nat. Rev. Genet., v. 6, n. 10, p. 766-73, Out 2005.

BEAR, M. F.; CONNORS, B. W.; PARADISO, M. A. Neurociências: Desvendando o Sistema Nervoso. 4ª ed., 1016 p., 2017.

BETTIO, L. E. B.; THACKERA, J. S.; RODGERS, S. P. et al. Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, v. 1866, n. 8, 2020.

BOYLE, L.L., LYNESS, J.M, DUBERSTEIN et. al. Trait neuroticism, depression, and cognitive function in older primary care patients. Am. J. Geriatr. Psychiatry 18, 305–312, 2010. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865852/pdf/nihms161226.pdf. Acesso em: 27 jul 2020.

CABEZAS-LLOBET, N.; VIDAL-SANCHO, L.; MASANA, M. et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Enhances Hippocampal Synaptic Plasticity and Improves Memory Performance in Huntington’s Disease. Molecular Neurobiology, v. 55, n. 11, p. 8263-8277, 2018. Disponível em: https://link.springer.com/content/pdf/10.1007/s12035-018-0972-5.pdf. Acesso em: 27 jul 2020.

CARTER, R. J. et al. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J. Neurosci., v. 19, n. 8, p. 3248-57, 15 1999. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782264/pdf/ns003248.pdf. Acesso em: 27 jul 2020.

CHESNOKOVA, V.; PECHNICK, R. N.; WAWROWSKYA, K. Chronic Peripheral Inflammation, Hippocampal Neurogenesis, and Behavior. Brain Behav Immun., v. 58, p. 1–8, Nov 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956598/pdf/nihms758258.pdf. Acesso em: 27 jul 2020.

COLLINGRIDGE, G. L. et al. Long-term depression in the CNS. Nature Reviews Neuroscience, v. 11, n. 7, p. 459-473, 2010.

COSTA, A. P. A. Inibidores da Fosfodiesterase tipo V: aspectos clínicos e farmacológicos. Seminários Aplicados. 2011. Disponível em: https://files.cercomp.ufg.br/weby/up/67/o/semi2011_Ana_Paula_1c.pdf. Acesso em 27 jul 2020.

CROOK, Z. R.; HOUSMAN, D. Huntington's disease: can mice lead the way to treatment? Neuron, v. 69, n. 3, p. 423-35, 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685469/pdf/nihms591484.pdf. Acesso em: 27 jul 2020.

DA FONSECA, V. S. et al. Brain-Derived Neurotrophic Factor Prevents Depressive-Like Behaviors in Early-Symptomatic YAC128 Huntington's Disease Mice. Mol. Neurobiol., v. 55, n. 9, p. 7201-7215, 2018. Disponível em: https://link.springer.com/content/pdf/10.1007/s12035-018-0890-6.pdf. Acesso em: 27 jul 2020.

DALLÉRAC, G. M.; CUMMINGS, D. M.; HIRST, M. C. Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington’s Disease. Neuromol. Med., v. 18, p. 146–153, 2016. Disponível em: https://link.springer.com/content/pdf/10.1007/s12017-016-8384-z.pdf. Acesso em: 27 jul 2020.

DUAN, W.; PENG, Q.; MASUDA, N. et al. Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington's disease. Neurobiol Dis., v. 30, n. 3, p. 312‐322, 2008. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683653/pdf/nihms53194.pdf. Acesso em: 27 jul 2020.

ERICKSON, K.I., VOSS, M.W., PRAKASH, R.S. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA, v. 108, p. 3017–3022, 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041121/pdf/pnas.201015950.pdf. Acesso em: 27 jul 2020.

FEDELE, V. et al. Neurogenesis in the R6/2 mouse model of Huntington's disease is impaired at the level of NeuroD1. Neuroscience, v. 173, p. 76-81, Jan 2011.

FERRER, I. et al. Brain-derived neurotrophic factor in Huntington disease. Brain Research, v. 866, n. 1, p. 257-261, 2000.

GAGE, F. H. Structural plasticity of the adult brain. Dialogues in clinical neuroscience, v. 6, n. 2, p. 135, 2004. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181802/pdf/DialoguesClinNeurosci-6-135.pdf. Acesso em: 27 jul 2020.

GALVÃO, T. F; PANSANI, T. S. A. Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiol. Serv. Saúde, Brasília, v. 24, n. 2, p. 335-342, jun. 2015. Disponível em: https://www.scielo.br/pdf/ress/v24n2/2237-9622-ress-24-02-00335.pdf. Acesso em: 27 jul 2020.

GHILAN, M.; BOSTROM, C. A.; HRYCIW, B. N. et al. YAC128 Huntington׳s disease transgenic mice show enhanced short-term hippocampal synaptic plasticity early in the course of the disease. Brain Research, v. 1581, p. 117-128, 2014.

GIBSON, H. E. et al. A similar impairment in CA3 mossy fibre LTP in the R6/2 mouse model of Huntington's disease and in the complexin II knockout mouse. European Journal of Neuroscience, v. 22, n. 7, p. 1701-1712, 2005.

GIL, J. M. et al. Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiol. Dis., v. 20, n. 3, p. 744-51, 2005.

GIRALT, A. et al. Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction. Molecular Neurodegeneration, v. 6, n. 1, p. 71, 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205049/pdf/1750-1326-6-71.pdf. Acesso em: 27 jul 2020.

GIRALT, A.; RODRIGO, T.; MARTÍN, E. D. et al. Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipasecγ activity and glutamate receptor expression. Neuroscience, v. 158, p. 1234–1250, 2009.

GIRALT, A.; BRITO, V.; CHEVY, Q. et al. Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington’s disease model. Nature Communications, v. 8, n. 15592, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459995/pdf/ncomms15592.pdf. Acesso em: 27 jul 2020.

GROTE, H.E.; BULL, N. D.; HOWARD, M. L. et al. Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetine. Eur J Neurosci. v. 22, n.8, p. 2081‐2088, 2005.

GUO, Q.; BIN, H.; CHENG, J. et al. The cryo-electron microscopy structure of huntingtin. Nature, v. 555, p. 117-120, 2018. Disponível em: https://www.nature.com/articles/nature25502.pdf?origin=ppub. Acesso em: 27 jul 2020.

GURVITS, T.V., SHENTON, M.E., HOKAMA, H. et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry, v. 40, p. 1091–1099, 1996. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910907/. Acesso em: 27 jul 2020.

HALBACH, O. B. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue. Res., v. 329, n. 3, p. 409-420, 2007. Disponível em: https://link.springer.com/content/pdf/10.1007/s00441-007-0432-4.pdf. Acesso em: 27 jul 2020.

HICKEY, M.A.; REYNOLDS, G.P.; MORTON, A.J. The role of dopamine in motor symptoms in the R6/2 transgenic mouse model of Huntington's disease. J Neurochem. v. 81, n.1, p.46‐59, 2002. Disponível em: https://onlinelibrary.wiley.com/doi/epdf/10.1046/j.1471-4159.2002.00804.x. Acesso em: 27 jul 2020.

HICKEY, M. A.; KOSMALSKA, A.; ENAYATI, J.; et al. Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. NSC. 2008. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665298/pdf/nihms78827.pdf. Acesso em: 27 jul 2020.

ISLAM, O.; LOO, T. X.; HEESE, K. Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways. Current neurovascular research, v. 6, n. 1, p. 42-53, 2009.

JAROUDI, W.; GARAMI, J.; GARRIDO, S. et al. Factors underlying cognitive decline in old age and Alzheimer’s disease: the role of the hippocampus. Rev. Neurosci., v. 28, n. 7, p. 705–714, 2017.

KOHL, Z. et al. Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Brain. Res., v. 1155, p. 24-33, 2007.

LAZIC, S.E.; GROTE, H; ARMSTRONG, R.J. et al. Decreased hippocampal cell proliferation in R6/1 Huntington's mice. Neuroreport. 2004; v. 15, n. 5, p. 811‐813. 2004.

LAZIC, S. E. et al. Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: effects of environmental enrichment. Eur. J. Neurosci., v. 23, n. 7, p. 1829-38, 2006.

LEUNER, B.; GOULD, E. Structural plasticity, and hippocampal function. Annual Review of Psychology, v. 61, p. 111-140, 2010. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012424/pdf/nihms-259849.pdf. Acesso em: 27 jul 2020.

MANGIARINI, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, v. 87, n. 3, p. 493-506, 1996. Disponível em: https://www.cell.com/action/showPdf?pii=S0092-8674%2800%2981369-0. Acesso em: 27 jul 2020.

MAISONPIERRE, P. C. et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron, v. 5, n. 4, p. 501-509, 1990.

McEWEN, B.S. The neurobiology of stress: from serendipity to clinical relevance. Brain Res., v. 886, p. 172–189, 2000.

MENALLED, L. B. et al. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats. J. Comp. Neurol., v. 465, n. 1, p. 11-26, 2003.

MO, C.; PANG, T. Y.; RANSOME, M. I. et al. High stress hormone levels accelerate the onset of memory deficits in 2 male Huntington's disease mice. Neurobiology of Disease, v. 69, p. 248-62, 2014.

MURPHY, K. P. et al. Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation. J. Neurosci., v. 20, n. 13, p. 5115-23, 2000. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772265/pdf/ns005115.pdf. Acesso em: 27 jul 2020.

NITHIANANTHARAJAH, J. et al. Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice. Neurobiol. Dis., v. 29, n. 3, p. 490-504, 2008.

ORVOEN, S. et al. Huntington's disease knock-in male mice show specific anxiety-like behaviour and altered neuronal maturation. Neurosci. Lett., v. 507, n. 2, p. 127-32, 2012.

PANG, T. et al. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience, v. 141, n. 2, p. 569-584, 2006.

PAULSEN, J. et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. Journal of Neurology, Neurosurgery & Psychiatry, v. 79, n. 8, p. 874-880, 2008. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2569211/pdf/JNN-79-08-0874.pdf. Acesso em: 27 jul 2020.

PENG, Q.; MASUDA, N.; JIANG, M. et al. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington's disease mouse model. Exp Neurol. v. 210, n. 1, p. 154‐163, 2008. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278120/pdf/nihms42162.pdf. Acesso em: 27 jul 2020.

POTTER, M. C.; YUAN, C.; OTTENRITTER, C. et al. Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr. 2010. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998194/. Acesso em: 27 jul 2020.

POULADI, M. A. et al. Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain, v. 132, n. Pt 4, p. 919-32, 2009. Disponível em: https://academic.oup.com/brain/article/132/4/919/286052. Acesso em: 27 jul 2020.

REINER, A. et al. Differential loss of striatal projection neurons in Huntington disease. Proceedings of the National Academy of Sciences, v. 85, n. 15, p. 5733-5737, 1988. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC281835/pdf/pnas00294-0397.pdf. Acesso em: 27 jul 2020.

ROSAS, HD; KOROSHETZ, WJ; CHEN YI. et al. Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology. v.60, n.10, p. 1615‐1620, 2003.

SAAVEDRA, A.; GIRALT1, A.; ARUMÍ1, H. et al. Regulation of Hippocampal cGMP Levels as a Candidate to Treat Cognitive Deficits in Huntington’s Disease. PLoS ONE, v. 8, n. 9, 2013. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764028/pdf/pone.0073664.pdf. Acesso em: 27 jul 2020.

SAUDOU, F.; HUMBERT, S. The Biology of Huntingtin. Neuron, v. 89, n. 5, p. 910-26, 2016. Disponível em: https://www.cell.com/action/showPdf?pii=S0896-6273%2816%2900096-9. Acesso em: 27 jul 2020.

SCHILLING, G. et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet., v. 8, n. 3, p. 397-407, 1999. Disponível em: https://academic.oup.com/hmg/article/8/3/397/599046. Acesso em: 27 jul 2020.

SCHILLING, G. et al. Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice. Exp. Neurol., v. 187, n. 1, p. 137-49, 2004.

SCHOENFELD, T. J.; McCAUSLAND, H. C.; MORRIS, H. D. et al. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry, v. 82, n. 12, p. 914-923, dez 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683934/pdf/nihms878713.pdf. Acesso em: 27 jul 2020.

SEO, H.; SONNTAG, K. C.; ISACSON, O. Generalized brain and skin proteasome inhibition in Huntington's disease. Annals of neurology, v. 56, n. 3, p. 319-328, 2004.

SIMPSON, J. M.; GIL-MOHAPEL, J.; POULADI, M. A. et al. Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiology of Disease, v. 41, p. 249–260, 2011.

SLOW, E. J. et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet., v. 12, n. 13, p. 1555-67, 2003. Disponível em: https://academic.oup.com/hmg/article/12/13/1555/554880. Acesso em: 27 jul 2020.

SPARGO, E; EVERALL, IP & LANTOS, PL. Neuronal loss in the hippocampus in Huntington's disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry. v. 56, n. 5, p. 487‐491, 1993. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1015006/pdf/jnnpsyc00478-0055.pdf. Acesso em: 27 jul 2020.

SPIRES, T. L. et al. Environmental enrichment rescues protein deficits in a mouse model of Huntington's disease, indicating a possible disease mechanism. Journal of Neuroscience, v. 24, n. 9, p. 2270-2276, 2004. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730435/pdf/0242270.pdf. Acesso em: 27 jul 2020.

TYEBJI, S.; SAAVEDRA, A.; CANAS, P. M. et al. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease. Neurobiology of Disease, v. 74, p. 41–57, 2015.

VALE, T. C. & CARDOSO, F. Chorea: A Journey through History. Tremor Other Hyperkinet Mov., v. 5, p. tre-5-296, 2015. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454991/pdf/tre-5-296.pdf. Acesso em: 27 jul 2020.

VAN DUIJN, E. et al. Neuropsychiatric symptoms in a European Huntington's disease cohort (REGISTRY). J. Neurol. Neurosurg. Psychiatry, v. 85, n. 12, p. 1411-8, 2014. Disponível em: https://jnnp.bmj.com/content/jnnp/85/12/1411.full.pdf. Acesso em: 27 jul 2020.

VASIC, V. & SCHMIDT, M. H. H. Resilience and Vulnerability to Pain and Inflammation in the Hippocampus. Int J Mol Sci., v. 18, n. 4, p. 739, abr 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412324/pdf/ijms-18-00739.pdf. Acesso em: 27 jul 2020.

VONSATTEL, JP & DIFIGLIA, M. Huntington disease. J Neuropathol Exp Neurol. 57(5):369‐384, 1998. Disponível em: https://academic.oup.com/jnen/article/57/5/369/2610067. Acesso em: 27 jul 2020.

WATERS, C. Description of chorea. Practice of medicine. Philadelphia: Lea & Blanchard, 1842.

WHEELER, V. C. et al. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum. Mol. Genet., v. 8, n. 1, p. 115-22, Jan 1999. Disponível em: https://academic.oup.com/hmg/article/8/1/115/2356046. Acesso em: 27 jul 2020.

WHEELER, V. C. et al. Early phenotypes that presage late-onset neurodegenerative 131

disease allow testing of modifiers in Hdh CAG knock-in mice. Hum. Mol. Genet., v. 11, n. 6, p. 633-40, 2002. Disponível em: https://academic.oup.com/hmg/article/11/6/633/2901611. Acesso em: 27 jul 2020.

YASSA, M. A.; MATTFELD, A. T.; STARK, S. M. et al. Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. PNAS, v. 108. n. 21, p. 8873-8878, 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102362/pdf/pnas.201101567.pdf. Acesso em: 27 jul 2020.

ZHANG, H.; PETITA, G. H.; GAUGHWINA, P. M. NGF Rescues Hippocampal Cholinergic Neuronal Markers, Restores Neurogenesis, and Improves the Spatial Working Memory in a Mouse Model of Huntington’s Disease. Journal of Huntington’s Disease, v. 2 p. 69–82, 2013.

ZHANG, T. Y. et al. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus. Nat. Commun., v. 9, n. 1, p. 298, 2018. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775256/pdf/41467_2017_Article_2748.pdf. Acesso em: 27 jul 2020.

ZHAO, C.; DENG, W.; GAGE, F. H. Mechanisms and Functional Implications of Adult Neurogenesis. Cell, v.132, n. 4, p. 645-60, 2008. Disponível em: https://www.cell.com/cell/fulltext/S0092-8674(08)00134-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867408001347%3Fshowall%3Dtrue. Acesso em: 27 jul 2020.

ZUCCATO, C. et al. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacological research, v. 52, n. 2, p. 133-139, 2005.

ZUCCATO, C. et al. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease. Brain pathology, v. 18, n. 2, p. 225-238, 2008. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1750-3639.2007.00111.x. Acesso em: 27 jul 2020.

ZUCCATO, C.; VALENZA, M.; CATTANEO, E. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol. Rev., v. 90, n. 3, p. 905-81, 2010. Disponível em: https://journals.physiology.org/doi/pdf/10.1152/physrev.00041.2009. Acesso em: 27 jul 2020.

Published

2021-12-09

How to Cite

Costa Ribeiro, P. S., Bianco, C. D., & de Souza Brocardo, P. (2021). Hippocampal neuroplasticity in animal models of Huntington’s disease: integrative review. Revista Brasileira De Iniciação Científica, 8, e021039. Retrieved from https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/84