Producción de hormigón verde mediante el reemplazo parcial del agregado fino por el pet

Autores/as

  • Ana Luiza André
  • Isabella Carolina Conceição
  • Márcio Roberto De Freitas UNIFEI Campus de Itabira
  • Ricardo Luiz Perez Teixeira UNIFEI Campus de Itabira

Palabras clave:

Hormigón Verde. Industria de la Construcción. PET. Piedra Arenisca.

Resumen

Este artículo de iniciación científica propone la evaluación de la producción y el rendimiento de los hormigones verdes que tienen un reemplazo parcial del agregado fino de piedra arenisca con residuos de tereftalato de polietileno (PET). La producción de hormigón verde tiene como objetivo minimizar la cantidad de PET posconsumo desechado en vertederos, o incinerado, utilizándolo como material para el consumo en la industria de la construcción. Los concretos verdes producidos con reemplazo parcial de 10% y 15% de agregado fino por PET han alcanzado la resistencia a la compresión y la densidad que permite su uso para fines estructurales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ana Luiza André

Graduanda em engenharia na UNIFEI-Itabira. Pesquisadora de iniciação científica  no grupo de pesquisa MATCIME da UNIFEI Campus de Itabira.

Isabella Carolina Conceição

Graduanda em engenharia na UNIFEI-Itabira. Pesquisadora de iniciação científica  no grupo de pesquisa MATCIME da UNIFEI Campus de Itabira.

Márcio Roberto De Freitas, UNIFEI Campus de Itabira

Professor na UNIFEI-Itabira. Pesquisador nos grupos de pesquisa MATCIME da UNIFEI Campus de Itabira. Professor na UNIFEI- Itabira. Doutor em Ciências e Engenharia de Materiais pela UFSCAR.

Ricardo Luiz Perez Teixeira , UNIFEI Campus de Itabira

Professor na UNIFEI-Itabira. Pesquisador nos grupos de pesquisa MATCIME e GPESE da UNIFEI Campus de Itabira. Professor na UNIFEI- Itabira. Doutor em Ciências e Engenharia de Materiais pela UFRJ.

Citas

ABNT NBR 5738:2015 Versão Corrigida:2016. Concrete - Procedure for molding and curing concrete test specimens. https://www.abntcatalogo.com.br/norma.aspx?ID=357453

ABNT NBR 5739:2018. Concrete - Compression test of cylindrical specimens. https://www.abntcatalogo.com.br/norma.aspx?ID=398444

ABNT NBR 6118:2014 Versão Corrigida:2014. Design of concrete structures — Procedure. https://www.abntcatalogo.com.br/norma.aspx?ID=317027

ABNT NBR 6118:2014 Versão Corrigida:2014. Design of concrete structures — Procedure. https://www.abntcatalogo.com.br/norma.aspx?ID=317027

ABNT NBR 9781: 2013. Concrete paving units — Specification and test methods. https://www.abntcatalogo.com.br/norma.aspx?ID=194630

ABNT NBR NM 248:2003. Aggregates - Sieve analysis of fine and coarse aggregates. https://www.abntcatalogo.com.br/norma.aspx?ID=2979

ALANI, Aktham H. et al. Durability performance of a novel ultra-high-performance PET green concrete (UHPPGC). Construction and Building Materials, v. 209, p. 395-405, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.088

ASTM C127-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, 2015, www.astm.org

ASTM C143 / C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org

ASTM C143 / C143M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org

ASTM C150 / C150M-18, Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, West Conshohocken, PA, 2013, www.astm.org

ASTM C192 / C192M-18, Standard Practice for Making and Curing Concrete, Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C192 / C192M-18, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C39 / C39M-18, Standard Test Method for Compressive Strength of Cements, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C496 / C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2017, www.astm.org

ASTM C595 / C595M-18, Standard Specification for Blended Hydraulic Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2018, www.astm.org

ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, 2013, www.astm.org

ASTM C936 / C936M-18, Standard Specification for Solid Concrete Interlocking Paving Units, ASTM International, West Conshohocken, PA, 2018, www.astm.org

BARBERA, Antonio C.; VYMAZAL, Jan; MAUCIERI, Carmelo. Greenhouse gases formation and emission. Encyclopedia of Ecology. 2a. ed., 2019, p. 329-333. DOI: https://doi.org/10.1016/B978-0-12-409548-9.10895-4

FERREIRA, Carla Regina et al. Comparative Study About Mechanical Properties of Structural Standard Concrete and Concrete with Addition of Vegetable Fibers. Materials Research, v. 20, p. 102-107, 2017. DOI: https://dx.doi.org/10.1590/1980-5373-mr-2016-0905

FOTI, Dora. Recycled waste PET for sustainable fiber-reinforced concrete. In: Use of Recycled Plastics in Eco-Efficient Concrete. Woodhead Publishing, 2019. p. 387-410. DOI: https://doi.org/10.1016/B978-0-08-102676-2.00018-9

ISLAM, Rafiquel; HYE, Md Abdul. Metallurgical treatment processes of metals (Fe and Steel, Al, Cu, Au) and their detrimental environmental issues-A mini review. International Journal of Scientific and Research Publications, v. 8, n. 5, p. 677-679, 2018. DOI: http://dx.doi.org/10.29322/IJSRP.8.5.2018.p7782

LIEW, K. M.; SOJOBI, A. O.; ZHANG, L. W. Green concrete: Prospects and challenges. Construction and building materials, v. 156, p. 1063-1095, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.008

MC-Bauchemie. Admixture Solutions for the Ready-Mixed Concrete Industry. MC-Bauchemie Müller GmbH & Co. KG. Am Kruppwald 1-8. 46238 Bottrop. Germany, 2019. https://www.mcbauchemie.com/assets/downloads/brochures/Readymix_Concrete_Industry_ MC-Bauchemie.pdf

MC-PowerFlow 1080 - High-Performance Superplasticizer of the new MCGeneration. MC-Bauchemie Müller GmbH & Co. KG. Am Kruppwald 1-8. 46238 Bottrop. Germany. 2019. https://www.mc-bauchemie.com.br/assets/downloads/products/br/fichas_tecnicas/MCPowerFlow%201080.pdf

OBLA, Karthik H. What is green concrete?. The Indian Concrete Journal, v. 24, p. 26-28, 2009. https://www.nrmca.org/research_engineering/Documents/25.pdf

RAHIMI, R. S.; Nikbin, IM; Allahyari, H.; Habibi T., S. Sustainable approach for recycling waste tire rubber and polyethylene terephthalate (PET) to produce green concrete with resistance against sulfuric acid attack. J. Clean. Prod, v. 126, p. 166-177, 2016. DOI: https://doi.org/10.1016/j.jclepro.2016.03.074

TRENT, S. MNL32-5TH, Test Sieving Methods: Guidelines for Establishing Sieve Analysis Procedures; 5th Edition, 2014. www.astm.org

TUCKETT. R. Greenhouse Gases. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Encyclopedia of Analytical Science, 3a. ed., 2019, p. 362-372. DOI: https://doi.org/10.1016/B978-012-409547-2.14031-4

Archivos adicionales

Publicado

2021-02-24

Cómo citar

André, A. L., Conceição, I. C., De Freitas, M. R. ., & Teixeira , R. L. P. . (2021). Producción de hormigón verde mediante el reemplazo parcial del agregado fino por el pet. Revista Brasileira De Iniciação Científica, 8, e021005. Recuperado a partir de https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/352