Extraction of rare earth elements from waste of printed circuit board: investigation of the use of ultrasound for Ce, La, and Y recovery

Authors

  • Paola De Azevedo Mello Universidade Federal de Santa Maria
  • Agatha Gabrielly Moreira Moura Universidade Federal de Santa Maria
  • Thaís Lavarda Gatiboni Universidade Federal de Santa Maria
  • Gabrielle Dineck Iop Universidade Federal de Santa Maria

Keywords:

Ultrasound. Extraction. Rare earth elements. Waste of printed circuit boards.

Abstract

In this work, the feasibility of the use of ultrasound to improve the extraction process of rare earth elements from waste printed circuit boards (WPCBs) was investigated, aiming the recycling of these elements, that have high added value and are present in several technological products. The main parameters related to the extraction process were evaluated by a factorial design, using an ultrasound bath at 25 kHz. After selecting the suitable parameters, other ultrasound systems of several frequencies and power were evaluated as well as a conventional stirring system.

Downloads

Download data is not yet available.

References

AKCIL, A.; ERUST, C.; GAHAN, C. S.; OZGUN, M.; SAHIN, M.; TUNCUK, A. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants - A review. Waste Management, v. 45, p. 268-271, 2015.

Disponível em: http://www.sciencedirect.com/science/article/pii/S0956053X15000549. Acesso em: 04 out. 2020.

AVVARU, B.; ROY, S. B.; CHOWDHURY, S.; HAREENDRAM, K. N.; PANDIT, A. B. Enhancement of the leaching rate of uranium in the presence of ultrasound. Industrial & Engineering Chemistry Research, v. 45, p. 7639 - 7648, 2006. Disponível em: https://pubs.acs.org/doi/abs/10.1021/ie060599x. Acesso em: 06 out. 2020.

BALARAM, V. Rare earth elements: A review of applications, occurrence, explorations, analysis, recycling, and environmental impact. Geoscience Fronstiers, v. 10, p. 1285-1303, 2019. Disponível em: http://www.sciencedirect.com/science/article/pii/S1674987119300258. Acesso em: 09 out. 2020.

DIEHL, L. O.; GATIBONI, T. L.; MELLO, P. A.; MULLER, E. I.; DUARTE, F. A.; FLORES, E. M. M. Ultrasound-assisted extraction of rare-earth elements from carbonatite rocks. Ultrasonics Sonochemistry, v. 40, p. 24-29, 2018. Disponível em: http://www.sciencedirect.com/science/article/pii/S1350417717301761. Acesso em: 09 out. 2020.

DUTTA, D.; PANDA, R.; KUMARI, A.; GOEL, S.; JHA, M. K. Sustainable recycling process for metals recovery from used printed circuit boards (PCBs). Sustainable Materials and Technologies, v. 17, p. e00066, 2018. Disponível em: http://www.sciencedirect.com/science/article/pii/S2214993717301641. Acesso em: 04 out. 2020.

ENSMINGER, D.; BOND, L. J. Ultrasonics: Fundamentals, Technologies and Applications. Boca Raton: CRC Press, 3 ed. 2011. 765 p.

EPA 3052. Disponível em: www.epa.gov/sites/production/files/2015-12/documents/3052. pdf. Acesso em: 27 set. 2020.

GATIBONI, T. L.; IOP, G. D.; DIEHL, L. O.; FLORES, E. M. M.; MULLER, E. I.; MELLO, P. M. An ultrasound-assisted sample preparation method of carbonatite rock for determination of rare earth elements by inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry, v. 3, n. S3, p. e8732, 2020. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/rcm.8732. Acesso em: 27 set. 2020.

HAQUE, N.; HUGHES, A.; LIM, S.; VERNON, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources, v. 3, p. 614-635, 2014. Disponível em: https://www.mdpi.com/2079-9276/3/4/614. Acesso em: 24 set. 2020.

ISILDAR, A.; RENE, E. R.; VAN HULLEBUSCH, E. D.; LENS, P. N. L. Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resources, Conservation & Recycling, v. 135, p. 296-312, 2018. Disponível em: http://www.sciencedirect.com/science/article/pii/S0921344917302100. Acesso em: 09 out. 2020.

KHANNA, R.; ELLAMPARUTHY, G.; CAYUMIL, R.; MISHRA, S. K.; MUKHERJEE, P. S. Concentration of rare earth elements during high temperature pyrolysis of waste printed circuit boards. Waste Management, v. 78, p. 602-610, 2018. Disponível em: http://www.sciencedirect.com/science/article/pii/S0956053X18303933. Acesso em: 09 out. 2020.

KRUG, J. F. Métodos de preparo de amostras: fundamentos sobre preparo de amostras orgânicas e inorgânicas para análise elementar. Piracicaba: SBQ, 2008. 340p.

KUMAR, K.; SRIVASTAV, S.; SHARANAGAT, V. S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, v. 70, 2020. Disponível em: http://www.sciencedirect.com/science/article/pii/S1350417720309950. Acesso em: 28 set. 2020.

LI, H.; EKSTEEN, J.; ORABY, E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives - A review. Resources, Conservation & Recycling, v. 130, p. 122-139, 2018. Disponível em: http://www.sciencedirect.com/science/article/pii/S092134491830288X. Acesso em: 07 out. 2020.

LUQUE-GARCÍA, J. L.; LUQUE de CASTRO, M. D.; Ultrasound: a powerful tool for leaching. Trends in Analytical Chemistry, v. 22, n.1, 2003.

MASON, T. J.; COLLINGS, A.; SUMEL, A. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrasonics Sonochemistry, v. 11, p. 205-210, 2004. Disponível em: http://www.sciencedirect.com/science/article/pii/S1350417704000252. Acesso em: 27 set. 2020.

MASON, T. J.; LORIMER, J. P. Applied Sonochemistry: The uses of power ultrasound in chemistry and processing. Weinheim: Wiley VCH, 2002. 314 p.

ROSA, P.; TERZI, S. Comparison of current practices for a combined management of printed circuit boards from different waste streams. Journal of Cleaner Production, v. 137, p. 300-312, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S0959652616309854. Acesso em: 05 out. 2020.

SOUZA, W. B.; ABREU, C. S.; RODRIGUES, G. D.; MAGESTE, A. B.; LEMOS, L. R. Selective separation of Cu, Ni and Ag from printed circuit board waste using an environmentally safe technique. Journal of Environmental Management, v. 226, p. 76-82, 2018. Disponível em: http://www.sciencedirect.com/science/article/pii/S0301479718309204. Acesso em 09 out. 2020.

TUNSU, C.; PETRANIKOVA, M.; GERGORIC, M.; EKBERG, C; RETEGAN T. Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy, v. 156, p. 239-258, 2015. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304386X15300311. Acesso em: 13 out 2020.

VYAS, S.; TING, Y. A review of the application of ultrasound in bioleaching and insights from sonication in (bio)chemical processes. Resources, v.7, n,3, 2018. Disponível em: https://www.mdpi.com/2079-9276/7/1/3. Acesso em 05 out. 2020.

YU, S.; YU, T.; SONG, W.; YU, X.; QIAO, J.; WANG, W.; DONG, H.; WU, Z.; DAI, L.; LI, T. Ultrasound-assited cyanide extraction of gold from gold concentrate at low temperature. Ultrasonics Sonochemistry, v. 64, 2020. Disponível em: http://www.sciencedirect.com/science/article/pii/S1350417719316815. Acesso em 07 out. 2020.

ZHANG, L.; XU, Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, v. 127, p. 19-36, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S0959652616302451. Acesso em: 26 set. 2020.

Published

2020-12-15

How to Cite

De Azevedo Mello, P., Moreira Moura, A. G. ., Lavarda Gatiboni, T., & Dineck Iop, G. (2020). Extraction of rare earth elements from waste of printed circuit board: investigation of the use of ultrasound for Ce, La, and Y recovery. Revista Brasileira De Iniciação Científica, 7(6), 165–181. Retrieved from https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/257