Energias renováveis

investigação sobre contribuições para o suprimento energético brasileiro

Autores

  • Tales Renato de Lima Antônio Universidade Federal de Itajubá
  • Cláudia Eliane da Matta Universidade Federal de Itajubá

Palavras-chave:

Brasil, Energias Renováveis, Mapeamento

Resumo

O objetivo deste artigo é investigar a contribuição das energias renováveis para o suprimento energético brasileiro. Assim, busca-se responder ao seguinte questionamento: quais são as fontes de energias renováveis no Brasil e onde estão localizadas?  Trata-se de uma pesquisa exploratória, com abordagem quantitativa, que utilizou dados do parque gerador nacional para o mapeamento das unidades geradoras de energia limpa no Brasil, utilizando um software livre. Os resultados revelam que as fontes renováveis brasileiras com projetos em operação são:  eólica, hidráulica, solar e bioenergia. Ressalta-se o papel de destaque da energia hidráulica no contexto energético brasileiro e a crescente penetração da energia eólica e solar. Desta forma, foi possível compreender o contexto e as contribuições das energias renováveis no país.

Downloads

Não há dados estatísticos.

Biografia do Autor

Tales Renato de Lima Antônio, Universidade Federal de Itajubá

Graduando em Engenharia Elétrica, pela Universidade Federal de Itajubá (Unifei). Aluno de iniciação científica, nos anos de 2023-2024, cujo tema de pesquisa é o mapeamento das energias renováveis no Brasil utilizando software livre.

Cláudia Eliane da Matta, Universidade Federal de Itajubá

Professora na Universidade Federal de Itajubá (Unifei). É doutora em Engenharia de Produção (Unifei), mestre em Engenharia Eletrônica e Computação (ITA).É integrante dos grupos de pesquisa "Advanced Power Technologies and Innovations in Systems and Smart Grids - aPTIs".

Referências

ABID, M.; KUMAR, M.; RAJ, V.; DHAS, M. Environmental Impacts of the solar photovoltaic systems in the context of globalization. Ecological Engineering & Environmental Technology, Warszawa, v. 24, n. 2, p. 231–240, jan. 2023. Disponível em: http://www.ecoeet.com/Environmental-Impacts-of-the-Solar-Photovoltaic-Systems-in-the-Context-of-Globalization,157168,0,2.html. Acesso em: 28 fev. 2024.

ABU-RAYASH, A.; DINCER, I. Sustainability assessment of energy systems: a novel integrated model. Journal of cleaner production, Amsterdam, v. 212, p. 1098–1116, mar. 2019. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0959652618337983. Acesso em: 23 fev. 2024.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. SIGA - Sistema de Informações de Geração da ANEEL. Dados Abertos ANEEL, 2024. Disponível em: https://dadosabertos.aneel.gov.br/dataset/siga-sistema-de-informacoes-de-geracao-da-aneel. Acesso em: 22 fev. 2024.

AHL, A.; GOTO, M.; YARIME, M.; TANAKA, K.; SAGAWA, D. Challenges and opportunities of blockchain energy applications: Interrelatedness among technological, economic, social, environmental, and institutional dimensions. Renewable & sustainable energy reviews, Amsterdam, v. 166, p. 1-10, set. 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032122005172. Acesso em: 7 fev. 2024.

AHL, A.; YARIME, M.; TANAKA, K.; SAGAWA, D. Review of blockchain-based distributed energy: Implications for institutional development. Renewable & sustainable energy reviews, Amsterdam, v. 107, p. 200–211, jun. 2019. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032119301352. Acesso em: 7 fev. 2024.

ALHARBI, F.; CSALA, D. Saudi Arabia’s solar and wind energy penetration: future performance and requirements. Energies, Basel, v. 13, n. 3, p. 1-18, jan. 2020. Disponível em: https://www.mdpi.com/1996-1073/13/3/588. Acesso em: 7 fev. 2024.

ANG, Tze-Zhang; SALEM, Mohamed; KAMAROL, Mohamad; DAS, Himadry Shekhar; NAZARI, Mohammad Alhuyi; A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews, Amsterdam, v. 43, p. 1-27, Sep. 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2211467X2200133X. Acesso em: 13 ago. 2024.

ANJOS, M. M. O papel das energias renováveis no processo de transição energética do estado de minas gerais: modelagem de sistemas energéticos para o horizonte 2030-2050. Dissertação (Pós-graduação Em Ciências e Técnicas Nucleares) – Universidade Federal de Minas Gerais, Belo Horizonte, 2019.

APPOLINÁRIO, Fábio. Metodologia científica. São Paulo, SP: Cengage, 2026.

BREWER, C. A. Basic Mapping principles for visualizing cancer data using geographic information systems (GIS). American Journal of Preventive Medicine, Amsterdam, v. 30, n. 2, p. S25–S36, fev. 2006. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0749379705003582. Acesso em: 15 nov. 2023.

CATOLICO, A. C. C.; MAESTRINI, M.; STRAUCH, J.C.M.; GIUSTI, F.; HUNT, J. Socioeconomic impacts of large hydroelectric power plants in Brazil: A synthetic control assessment of Estreito hydropower plant. Renewable & sustainable energy reviews, Amsterdam, v. 151, p. 1-16, nov. 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032121007875. Acesso em: 7 fev. 2024.

ELAVARASAN, Rajvikram Madurai; SHAFIULLAH, G.M.; PADMANABAN, Sanjeevikumar; KUMAR, Nallapaneni Manoj; ANNAM, Annapurna; VETRICHELVAN, Ajayragavan Manavalanagar; MIHET-POPA, Lucian; HOLM-NIELSEN, Jens Bo. A comprehensive review on renewable energy development, challenges, and policies of leading Indian States with an international perspective. IEEE Access, v. 8, p. 74432–74457, 2020. Disponível em: https://ieeexplore.ieee.org/document/9072152/. Acesso em: 10 ago. 2024.

EMPRESA DE PESQUISA ENERGÉTICA. Anuário Estatístico de Energia Elétrica. EPE, 2023a. Disponível em: https://dashboard.epe.gov.br/apps/anuario-livro/. Acesso em 30 de novembro de 2023.

EMPRESA DE PESQUISA ENERGÉTICA. Balanço Energético Nacional 2023. EPE, 2023b. Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2023. Acesso em 30 de novembro de 2023.

FREE SOFTWARE FOUNDATION. What is Free Software? GNU Project, 2024. Disponível em: https://www.gnu.org/philosophy/free-sw.en.html. Acesso em: 04 mar. 2024.

GIL, A. C. Como elaborar projetos de pesquisa. 7.ed. São Paulo: Atlas, 2022.

GOLDTHAU, A.; TAGLIAPIETRA, S. Energy crisis: five questions that must be answered in 2023. Nature, London, v. 612, n. 7941, p. 627–630, dec. 2022. Disponível em: https://www.nature.com/articles/d41586-022-04467-w. Acesso em: 23 fev. 2024.

HANDAYA, H.; SUSANTO, Herry; INDRAWAN, Dikky; Marimin, M. Supply and demand characteristics of Palm Kernel Shell as a renewable energy source for industries. International Journal of Renewable Energy Development, Semarang, v. 11, n. 2, p. 481–490, 2022. Disponível em: <https://ijred.cbiore.id/index.php/ijred/article/view/41971>. Acesso em: 15 ago. 2024.

IMMERZEEL, D. J.; VERWEIJ, P. A.; HILST, F.; FAAIJ, A. P. C. Biodiversity impacts of bioenergy crop production: a state‐of‐the‐art review. GCB Bioenergy, Hoboken, v. 6, n. 3, p. 183–209, abr. 2013. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/gcbb.12067. Acesso em: 7 fev. 2024.

KANNAN, N.; VAKEESAN, D. Solar energy for future world: a review. Renewable & sustainable energy reviews, Amsterdam, v. 62, p. 1092–1105, set. 2016. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032116301320. Acesso em: 23 fev. 2024.

KAPITONOV, I. A.; VOLOSHIN, V. I.; FILOSOFOVA, T. G.; SYRTSOV, D. N. Digitalization of the energy industry as a direction for ensuring the growth of energy efficiency and teh energy security of the state. Viešoji politika ir administravimas, Vilnius, v. 19, n. 2, p. 191–204, jun.2020. Disponível em: https://ojs.mruni.eu/ojs/public-policy-and-administration/article/view/5470. Acesso em: 23 fev. 2024.

KARACA, A.; DINCER, I. A newly developed experimental green hydrogen generator: Analysis and assessment. Fuel, Amsterdam, v. 328, p. 1-11, nov. 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0016236122021366. Acesso em: 23 fev. 2024.

KHAWAJA, C.; JANSSEN, R.; MERGNER, R.; RUTZ, D.; COLANGELI, M.; TRAVERSO, L.; MORESE. M. M.; HIRSCHMUGL, M.; SOBE, C.; CALERA, A.; CIFUENTES, D.; FABIANI, S.; PULIGHE, G.; PIRELLI, T.; BONATI, G.; TRYBOI, O.; HAIDAI, O.; KÖHLER, R.; KNOCHE, D.; SCHLEPPHORST, R.; GYURIS, P. Viability and sustainability assessment of bioenergy value chains on Underutilised Lands in the EU and Ukraine. Energies, Basel, v. 14, n. 6, p. 1-21, mar. 2021. Disponível em: https://www.mdpi.com/1996-1073/14/6/1566. Acesso em: 7 fev. 2024.

KONYUHOV, V. Y.; GLADKIH, A. M.; GALYAUTDINOV, I. I.; KISELEVA, T. Y. Power industry of future is renewable sources. IOP conference series. Earth and environmental science, Bristol, v. 378, n. 1, p. 1-6, abr. 2019. Disponível em: https://iopscience.iop.org/article/10.1088/1755-1315/378/1/012047. Acesso em: 7 fev. 2024.

LATINI, Juliana Ribeiro; PEDLOWSKI, Marcos Antonio. Examinando as contradições em torno das Pequenas Centrais Hidrelétricas como fontes sustentáveis de energia no Brasil. Desenvolvimento e Meio Ambiente, Curitiba, v. 37, 2016. Disponível em: <https://revistas.ufpr.br/made/article/view/42599>. Acesso em: 15 ago. 2024.

LIN, R.; REN, J. Renewable Energy and Sustainable Development. Journal of renewable energy and sustainable development, Alexandria, v. 6, n. 1, p. 3–7, jun. 2020. Disponível em: http://apc.aast.edu/ojs/index.php/RESD/article/view/06.1.003. Acesso em: 23 fev. 2024.

LIU, B.; YANG, Z.; CHEN, Y.; LI, L.; CHEN, S. A decision-making framework for scheme selection for sustainable hydropower development. International journal of green energy, Abingdon, v. 18, n. 9, p. 951–965, mar. 2021. Disponível em: https://www.tandfonline.com/doi/full/10.1080/15435075.2021.1890081. Acesso em: 7 fev. 2024.

LOPES, P. V. F.; COSTA, C. M. S.; ALMEIDA, A. K.; DE ALMEIDA, I. K. Sustainability assessment model for Brazilian hydroelectric projects using multicriteria analysis. Sustainable energy technologies and assessments, Amsterdam, v. 51, p. 101851, jun. 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2213138821008651. Acesso em: 7 fev. 2024.

MOORE-O’LEARY, K. A.; HERNANDEZ, R. R.; JOHNSTON, D. S.; ABELLA, S. R.; TANNER, K. E.; SWANSON, A. C.; KREITLER, J.; LOVICH, J. E. Sustainability of utility-scale solar energy: critical ecological concepts. Frontiers in ecology and the environment, Washington, v. 15, n. 7, p. 385–394, ago. 2017. Disponível em: https://esajournals.onlinelibrary.wiley.com/doi/10.1002/fee.1517. Acesso em: 6 fev. 2024.

MOREIRA JÚNIOR, O. M.; SOUZA, C. C. Aproveitamento fotovoltaico, análise comparativa entre Brasil e Alemanha. Interações: revista internacional de desenvolvimento local, Mato Grosso do Sul, v. 21, n. 2, p. 379–387, abr./jun. 2020. Disponível em: https://www.scielo.br/j/inter/a/t7NryC6KdCmwL4RXL4pjVfN/?lang=pt. Acesso em: 23 fev. 2024.

MURUGANANTHAM, B.; GNANADASS, R.; PADHY, N.P. Challenges with renewable energy sources and storage in practical distribution systems. Renewable and Sustainable Energy Reviews, Amsterdam, v. 73, p. 125–134, 2017. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032117301004. Acesso em: 15 ago. 2024.

NASCIMENTO, V. A. M. A. DO; TRINDADE, T. B.; CARVALHO, C. M. Análise dos parâmetros para geração de energia solar fotovoltaica no Acre, Brasil. InterEspaço: Revista de Geografia e Interdisciplinaridade, Rondônia, v. 7, n. 20, p. 1-16, out. 2021. Disponível em: http://www.periodicoseletronicos.ufma.br/index.php/interespaco/article/view/16383. Acesso em: 23 fev. 2024.

OLIVEIRA, E. A. F.; ARAÚJO FILHO, J. G. Perspectivas da geração e aplicação da energia solar fotovoltaica no Brasil: uma revisão da literatura (2015-2019). Revista Ibero-Americana de Ciências Ambientais, Natal, v. 12, n. 5, p. 435–450, 28 mar. 2021. DOI: https://doi.org/10.15628/holos.2013.1493. Disponível em: https://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/1493/677. Acesso em: 06 mar. 2024.

OLIVEIRA, G.; CURI, A. Z.; FELINI, P. S.; FICARELLI, T. R. A. Impactos econômicos e ambientais da geração de energia eólica no Brasil. São Paulo: ABEEólica, 2020. Disponível em: https://epbr.com.br/wp-content/uploads/2021/02/ABEEolica_GO-Associados-V.-Final.pdf. Acesso em 30 de nov. 2023.

QUAN, S. J.; BANSAL, P. A systematic review of GIS-based local climate zone mapping studies. Building and Environment, Amsterdam, v. 196, p. 1-16, jun. 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0360132321001980. Acesso em: 15 nov. 2023.

RAMACHANDRA, T. V.; SHRUTHI, B. V. Wind energy potential mapping in Karnataka, India, using GIS. Energy Conversion and Management, Amsterdam, v. 46, n. 9–10, p. 1561–1578, jun. 2005. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0196890404001979. Acesso em: 15 nov. 2023.

RAZM, S.; DOLGUI, A.; HAMMAMI, R.; BRAHIMI, N.; NICKEL, S.; SAHEBI, H. A two-phase sequential approach to design bioenergy supply chains under uncertainty and social concerns. Computers & chemical engineering, Amsterdam, v. 145, p. 1-24, fev. 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0098135420304506. Acesso em: 7 fev. 2024.

REPO, A.; KÄNKÄNEN, R.; TUOVINEN, J.; ANTIKAINEN, R.; TUOMI, M.; VANHALA, P.; LISKI, J. Forest bioenergy climate impact can be improved by allocating forest residue removal. GCB Bioenergy, Hoboken, v. 4, n. 2, p. 202–212, set. 2012. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/j.1757-1707.2011.01124.x. Acesso em: 7 fev. 2024.

RÖDER, M.; MOHR, A.; LIU, Y. Sustainable bioenergy solutions to enable development in low- and middle-income countries beyond technology and energy access. Biomass and Bioenergy, Amsterdam, v. 143, p. 1-8, dec. 2020. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0961953420304104. Acesso em: 23 fev. 2024.

RUTKOWSKA, M.; BARTOSZCZUK, P.; SINGH, U. Management of green consumer values in renewable energy sources and eco innovation in India. Energies, Basel, v. 14, n. 21, p. 1-17, out. 2021. Disponível em: https://www.mdpi.com/1996-1073/14/21/7061. Acesso em: 23 fev. 2024.

SILVA, M. V. M.; SILVEIRA, C. S.; DA COSTA, J. M. F.; MARTINS, E. S. P. R.; JÚNIOR, F. C. V. Projection of climate change and consumptive demands projections impacts on hydropower generation in the São Francisco River Basin, Brazil. Water, Basel, v. 13, n. 3, p. 1-25, jan. 2021. Disponível em: https://www.mdpi.com/2073-4441/13/3/332. Acesso em: 23 fev. 2024.

SILVEIRA, Semida; ANDERSSON, Lars; LEBEDYS, Arvydas. Opportunities to boost bioenergy in Lithuania. Biomass and Bioenergy, v. 30, n. 12, p. 1076–1081, 2006. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0961953406001292>. Acesso em: 17 ago. 2024.

TEIXEIRA, R. L. P. Energias renováveis no nordeste do brasil e as relações com a adaptação às mudanças climáticas. Tese (Doutorado em Estudos Urbanos e Regionais). Universidade Federal do Rio Grande do Norte, Natal, 2023.

THRÄN, Daniela; BAUSCHMANN, Martin; DAHMEN, Nicolaus; ERLACH, Berit; HEINBACH, Katharina; HIRSCHL, Bernd; HILDEBRAND, Jan; RAU, Irina; MAJER, Stefan; OEHMICHEN, Katja; SCHWEIZER-RIES, Petra; HENNIG; Christiane. Bioenergy beyond the German “Energiewende”– Assessment framework for integrated bioenergy strategies. Biomass and Bioenergy, v. 142, p. 105769, 2020. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0961953420303032>. Acesso em: 17 ago. 2024.

UNITED NATIONS. The Sustainable Development Goals Report 2022. New York, 2022. Disponível em: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf. Acesso em: 18 jan. 2023.

WAGNER, O.; GÖTZ, T. Presentation of the 5Ds in Energy Policy: A Policy Paper to Show How Germany Can Regain Its Role as a Pioneer in Energy Policy. Energies, Basel, v. 14, n. 20, p. 1-19, out. 2021. Disponível em: https://www.mdpi.com/1996-1073/14/20/6799. Acesso em: 23 fev. 2024.

WELFLE, A. Balancing growing global bioenergy resource demands - Brazil’s biomass potential and the availability of resource for trade. Biomass and Bioenergy, Amsterdam, v. 105, p. 83–95, out. 2017. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0961953417301976. Acesso em: 29 nov. 2023.

YÜREK, Y.; BULUT, M.; ÖZYÖRÜK, B.; ÖZCAN, E. Evaluation of the hybrid renewable energy sources using sustainability index under uncertainty. Sustainable Energy, Grids and Networks, Amsterdam, v. 28, p. 1-16, dec. 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2352467721000989. Acesso em: 7 fev. 2024.

ZARE, S.; ALIPOUR, M.; HAFEZI, M.; STEWART, R. A.; RAHMAN, A. Examining wind energy deployment pathways in complex macro-economic and political settings using a fuzzy cognitive map-based method. Energy, Amsterdam, v. 238, p. 1-16, jan. 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0360544221019216. Acesso em: 23 fev. 2024.

ZSIBORÁCS, H.; HEGEDŰSNÉ BARANYAI, N.; ZENTKÓ, L.; MÓROCZ, A.; PÓCS, I.; MÁTÉ, K.; PINTÉR, G. Electricity market challenges of photovoltaic and energy storage technologies in the European Union: regulatory challenges and responses. Applied sciences, Basel, v. 10, n. 4, p. 1-26, fev. 2020. Disponível em: https://www.mdpi.com/2076-3417/10/4/1472. Acesso em: 7 fev. 2024.

Downloads

Publicado

2024-11-07

Como Citar

Antônio, T. R. de L., & Matta, C. E. da. (2024). Energias renováveis: investigação sobre contribuições para o suprimento energético brasileiro. Revista Brasileira De Iniciação Científica, e024046. Recuperado de https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/1576